Action model for impulse forward dynamics in multibody systems. More...
#include <impulse-fwddyn.hpp>
Public Types | |
typedef ActionDataAbstractTpl< Scalar > | ActionDataAbstract |
typedef ActionModelAbstractTpl< Scalar > | Base |
typedef ConstraintModelManagerTpl< Scalar > | ConstraintModelManager |
typedef CostModelSumTpl< Scalar > | CostModelSum |
typedef ActionDataImpulseFwdDynamicsTpl< Scalar > | Data |
typedef ImpulseModelMultipleTpl< Scalar > | ImpulseModelMultiple |
typedef MathBaseTpl< Scalar > | MathBase |
typedef MathBase::MatrixXs | MatrixXs |
typedef StateMultibodyTpl< Scalar > | StateMultibody |
typedef MathBase::VectorXs | VectorXs |
Public Types inherited from ActionModelAbstractTpl< _Scalar > | |
typedef ActionDataAbstractTpl< Scalar > | ActionDataAbstract |
typedef MathBaseTpl< Scalar > | MathBase |
typedef StateAbstractTpl< Scalar > | StateAbstract |
typedef MathBase::VectorXs | VectorXs |
Public Member Functions | |
ActionModelImpulseFwdDynamicsTpl (boost::shared_ptr< StateMultibody > state, boost::shared_ptr< ImpulseModelMultiple > impulses, boost::shared_ptr< CostModelSum > costs, boost::shared_ptr< ConstraintModelManager > constraints, const Scalar r_coeff=Scalar(0.), const Scalar JMinvJt_damping=Scalar(0.), const bool enable_force=false) | |
Initialize the impulse forward-dynamics action model. More... | |
ActionModelImpulseFwdDynamicsTpl (boost::shared_ptr< StateMultibody > state, boost::shared_ptr< ImpulseModelMultiple > impulses, boost::shared_ptr< CostModelSum > costs, const Scalar r_coeff=Scalar(0.), const Scalar JMinvJt_damping=Scalar(0.), const bool enable_force=false) | |
Initialize the impulse forward-dynamics action model. More... | |
virtual void | calc (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x) |
Compute the total cost value for nodes that depends only on the state. More... | |
virtual void | calc (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u) |
Compute the system acceleration, and cost value. More... | |
virtual void | calcDiff (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x) |
Compute the derivatives of the cost functions with respect to the state only. More... | |
virtual void | calcDiff (const boost::shared_ptr< ActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u) |
Compute the derivatives of the impulse dynamics, and cost function. More... | |
virtual bool | checkData (const boost::shared_ptr< ActionDataAbstract > &data) |
Check that the given data belongs to the impulse forward-dynamics data. | |
virtual boost::shared_ptr< ActionDataAbstract > | createData () |
Create the impulse forward-dynamics data. More... | |
const VectorXs & | get_armature () const |
Return the armature vector. | |
const boost::shared_ptr< ConstraintModelManager > & | get_constraints () const |
Return the constraint model manager. | |
const boost::shared_ptr< CostModelSum > & | get_costs () const |
Return the cost model. | |
const Scalar | get_damping_factor () const |
Return the damping factor used in the operational space inertia matrix. | |
virtual const VectorXs & | get_g_lb () const |
Return the lower bound of the inequality constraints. | |
virtual const VectorXs & | get_g_ub () const |
Return the upper bound of the inequality constraints. | |
const boost::shared_ptr< ImpulseModelMultiple > & | get_impulses () const |
Return the impulse model. | |
virtual std::size_t | get_ng () const |
Return the number of inequality constraints. | |
virtual std::size_t | get_nh () const |
Return the number of equality constraints. | |
pinocchio::ModelTpl< Scalar > & | get_pinocchio () const |
Return the Pinocchio model. | |
const Scalar | get_restitution_coefficient () const |
Return the restituion coefficient. | |
virtual void | print (std::ostream &os) const |
Print relevant information of the impulse forward-dynamics model. More... | |
virtual void | quasiStatic (const boost::shared_ptr< ActionDataAbstract > &data, Eigen::Ref< VectorXs > u, const Eigen::Ref< const VectorXs > &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9)) |
Computes the quasic static commands. More... | |
void | set_armature (const VectorXs &armature) |
Modify the armature vector. | |
void | set_damping_factor (const Scalar damping) |
Modify the damping factor used in the operational space inertia matrix. | |
void | set_restitution_coefficient (const Scalar r_coeff) |
Modify the restituion coefficient. | |
Public Member Functions inherited from ActionModelAbstractTpl< _Scalar > | |
ActionModelAbstractTpl (boost::shared_ptr< StateAbstract > state, const std::size_t nu, const std::size_t nr=0, const std::size_t ng=0, const std::size_t nh=0) | |
Initialize the action model. More... | |
bool | get_has_control_limits () const |
Indicates if there are defined control limits. | |
std::size_t | get_nr () const |
Return the dimension of the cost-residual vector. | |
std::size_t | get_nu () const |
Return the dimension of the control input. | |
const boost::shared_ptr< StateAbstract > & | get_state () const |
Return the state. | |
const VectorXs & | get_u_lb () const |
Return the control lower bound. | |
const VectorXs & | get_u_ub () const |
Return the control upper bound. | |
VectorXs | quasiStatic_x (const boost::shared_ptr< ActionDataAbstract > &data, const VectorXs &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9)) |
void | set_g_lb (const VectorXs &g_lb) |
Modify the lower bound of the inequality constraints. | |
void | set_g_ub (const VectorXs &g_ub) |
Modify the upper bound of the inequality constraints. | |
void | set_u_lb (const VectorXs &u_lb) |
Modify the control lower bounds. | |
void | set_u_ub (const VectorXs &u_ub) |
Modify the control upper bounds. | |
Public Attributes | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef _Scalar | Scalar |
Public Attributes inherited from ActionModelAbstractTpl< _Scalar > | |
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef _Scalar | Scalar |
Protected Attributes | |
VectorXs | g_lb_ |
Lower bound of the inequality constraints. | |
VectorXs | g_ub_ |
< Lower bound of the inequality constraints | |
boost::shared_ptr< StateAbstract > | state_ |
< Upper bound of the inequality constraints | |
Protected Attributes inherited from ActionModelAbstractTpl< _Scalar > | |
VectorXs | g_lb_ |
Lower bound of the inequality constraints. | |
VectorXs | g_ub_ |
Lower bound of the inequality constraints. | |
bool | has_control_limits_ |
std::size_t | ng_ |
Number of inequality constraints. | |
std::size_t | nh_ |
Number of equality constraints. | |
std::size_t | nr_ |
Dimension of the cost residual. | |
std::size_t | nu_ |
Control dimension. | |
boost::shared_ptr< StateAbstract > | state_ |
Model of the state. | |
VectorXs | u_lb_ |
Lower control limits. | |
VectorXs | u_ub_ |
Upper control limits. | |
VectorXs | unone_ |
Neutral state. | |
Additional Inherited Members | |
Protected Member Functions inherited from ActionModelAbstractTpl< _Scalar > | |
void | update_has_control_limits () |
Update the status of the control limits (i.e. if there are defined limits) | |
Action model for impulse forward dynamics in multibody systems.
This class implements impulse forward dynamics given a stack of rigid-impulses described in ImpulseModelMultipleTpl
, i.e.,
\[ \left[\begin{matrix}\mathbf{v}^+ \\ -\boldsymbol{\Lambda}\end{matrix}\right] = \left[\begin{matrix}\mathbf{M} & \mathbf{J}^{\top}_c \\ {\mathbf{J}_{c}} & \mathbf{0} \end{matrix}\right]^{-1} \left[\begin{matrix}\mathbf{M}\mathbf{v}^- \\ -e\mathbf{J}_c\mathbf{v}^- \\\end{matrix}\right], \]
where \(\mathbf{q}\in Q\), \(\mathbf{v}\in\mathbb{R}^{nv}\) are the configuration point and generalized velocity (its tangent vector), respectively; \(\mathbf{v}^+\), \(\mathbf{v}^-\) are the discontinuous changes in the generalized velocity (i.e., velocity before and after impact, respectively); \(\mathbf{J}_c\in\mathbb{R}^{nc\times nv}\) is the contact Jacobian expressed in the local frame; and \(\boldsymbol{\Lambda}\in\mathbb{R}^{nc}\) is the impulse vector.
The derivatives of the next state and contact impulses are computed efficiently based on the analytical derivatives of Recursive Newton Euler Algorithm (RNEA) as described in [mastalli-icra20]. Note that the algorithm for computing the RNEA derivatives is described in [carpentier-rss18].
The stack of cost and constraint functions are implemented in CostModelSumTpl
and ConstraintModelAbstractTpl
, respectively. The computation of the impulse dynamics and its derivatives are carrying out inside calc()
and calcDiff()
functions, respectively. It is also important to remark that calcDiff()
computes the derivatives using the latest stored values by calc()
. Thus, we need to run calc()
first.
ActionModelAbstractTpl
, calc()
, calcDiff()
, createData()
Definition at line 68 of file impulse-fwddyn.hpp.
ActionModelImpulseFwdDynamicsTpl | ( | boost::shared_ptr< StateMultibody > | state, |
boost::shared_ptr< ImpulseModelMultiple > | impulses, | ||
boost::shared_ptr< CostModelSum > | costs, | ||
const Scalar | r_coeff = Scalar(0.) , |
||
const Scalar | JMinvJt_damping = Scalar(0.) , |
||
const bool | enable_force = false |
||
) |
Initialize the impulse forward-dynamics action model.
It describes the impulse dynamics of a multibody system under rigid-contact constraints defined by ImpulseModelMultipleTpl
. It computes the cost described in CostModelSumTpl
.
[in] | state | State of the multibody system |
[in] | actuation | Actuation model |
[in] | impulses | Stack of rigid impulses |
[in] | costs | Stack of cost functions |
[in] | r_coeff | Restitution coefficient (default 0.) |
[in] | JMinvJt_damping | Damping term used in operational space inertia matrix (default 0.) |
[in] | enable_force | Enable the computation of the contact force derivatives (default false) |
ActionModelImpulseFwdDynamicsTpl | ( | boost::shared_ptr< StateMultibody > | state, |
boost::shared_ptr< ImpulseModelMultiple > | impulses, | ||
boost::shared_ptr< CostModelSum > | costs, | ||
boost::shared_ptr< ConstraintModelManager > | constraints, | ||
const Scalar | r_coeff = Scalar(0.) , |
||
const Scalar | JMinvJt_damping = Scalar(0.) , |
||
const bool | enable_force = false |
||
) |
Initialize the impulse forward-dynamics action model.
It describes the impulse dynamics of a multibody system under rigid-contact constraints defined by ImpulseModelMultipleTpl
. It computes the cost described in CostModelSumTpl
.
[in] | state | State of the multibody system |
[in] | actuation | Actuation model |
[in] | impulses | Stack of rigid impulses |
[in] | costs | Stack of cost functions |
[in] | constraints | Stack of constraints |
[in] | r_coeff | Restitution coefficient (default 0.) |
[in] | JMinvJt_damping | Damping term used in operational space inertia matrix (default 0.) |
[in] | enable_force | Enable the computation of the contact force derivatives (default false) |
|
virtual |
Compute the system acceleration, and cost value.
It computes the system acceleration using the impulse dynamics.
[in] | data | Impulse forward-dynamics data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
[in] | u | Control input \(\mathbf{u}\in\mathbb{R}^{nu}\) |
Implements ActionModelAbstractTpl< _Scalar >.
|
virtual |
Compute the total cost value for nodes that depends only on the state.
It updates the total cost and the system acceleration is not updated as it is expected to be zero. Additionally, it does not update the contact forces. This function is used in the terminal nodes of an optimal control problem.
[in] | data | Impulse forward-dynamics data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
Reimplemented from ActionModelAbstractTpl< _Scalar >.
|
virtual |
Compute the derivatives of the impulse dynamics, and cost function.
[in] | data | Impulse forward-dynamics data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
[in] | u | Control input \(\mathbf{u}\in\mathbb{R}^{nu}\) |
Implements ActionModelAbstractTpl< _Scalar >.
|
virtual |
Compute the derivatives of the cost functions with respect to the state only.
It updates the derivatives of the cost function with respect to the state only. Additionally, it does not update the contact forces derivatives. This function is used in the terminal nodes of an optimal control problem.
[in] | data | Impulse forward-dynamics data |
[in] | x | State point \(\mathbf{x}\in\mathbb{R}^{ndx}\) |
Reimplemented from ActionModelAbstractTpl< _Scalar >.
|
virtual |
Create the impulse forward-dynamics data.
Reimplemented from ActionModelAbstractTpl< _Scalar >.
|
virtual |
Computes the quasic static commands.
The quasic static commands are the ones produced for a the reference posture as an equilibrium point, i.e. for \(\mathbf{f^q_x}\delta\mathbf{q}+\mathbf{f_u}\delta\mathbf{u}=\mathbf{0}\)
[in] | data | Action data |
[out] | u | Quasic static commands |
[in] | x | State point (velocity has to be zero) |
[in] | maxiter | Maximum allowed number of iterations |
[in] | tol | Tolerance |
Reimplemented from ActionModelAbstractTpl< _Scalar >.
|
virtual |
Print relevant information of the impulse forward-dynamics model.
[out] | os | Output stream object |
Reimplemented from ActionModelAbstractTpl< _Scalar >.