Crocoddyl
 
Loading...
Searching...
No Matches
DifferentialActionModelContactFwdDynamicsTpl< _Scalar > Class Template Reference

Differential action model for contact forward dynamics in multibody systems. More...

#include <contact-fwddyn.hpp>

Inheritance diagram for DifferentialActionModelContactFwdDynamicsTpl< _Scalar >:
DifferentialActionModelAbstractTpl< _Scalar >

Public Types

typedef ActuationModelAbstractTpl< Scalar > ActuationModelAbstract
 
typedef DifferentialActionModelAbstractTpl< Scalar > Base
 
typedef ConstraintModelManagerTpl< Scalar > ConstraintModelManager
 
typedef ContactModelMultipleTpl< Scalar > ContactModelMultiple
 
typedef CostModelSumTpl< Scalar > CostModelSum
 
typedef DifferentialActionDataContactFwdDynamicsTpl< Scalar > Data
 
typedef DifferentialActionDataAbstractTpl< Scalar > DifferentialActionDataAbstract
 
typedef MathBaseTpl< Scalar > MathBase
 
typedef MathBase::MatrixXs MatrixXs
 
typedef StateMultibodyTpl< Scalar > StateMultibody
 
typedef MathBase::VectorXs VectorXs
 
- Public Types inherited from DifferentialActionModelAbstractTpl< _Scalar >
typedef DifferentialActionDataAbstractTpl< Scalar > DifferentialActionDataAbstract
 
typedef MathBaseTpl< Scalar > MathBase
 
typedef MathBase::MatrixXs MatrixXs
 
typedef StateAbstractTpl< Scalar > StateAbstract
 
typedef MathBase::VectorXs VectorXs
 

Public Member Functions

 DifferentialActionModelContactFwdDynamicsTpl (std::shared_ptr< StateMultibody > state, std::shared_ptr< ActuationModelAbstract > actuation, std::shared_ptr< ContactModelMultiple > contacts, std::shared_ptr< CostModelSum > costs, const Scalar JMinvJt_damping=Scalar(0.), const bool enable_force=false)
 Initialize the contact forward-dynamics action model.
 
 DifferentialActionModelContactFwdDynamicsTpl (std::shared_ptr< StateMultibody > state, std::shared_ptr< ActuationModelAbstract > actuation, std::shared_ptr< ContactModelMultiple > contacts, std::shared_ptr< CostModelSum > costs, std::shared_ptr< ConstraintModelManager > constraints, const Scalar JMinvJt_damping=Scalar(0.), const bool enable_force=false)
 Initialize the contact forward-dynamics action model.
 
virtual void calc (const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
 Compute the total cost value for nodes that depends only on the state.
 
virtual void calc (const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)
 Compute the system acceleration, and cost value.
 
virtual void calcDiff (const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x)
 Compute the derivatives of the cost functions with respect to the state only.
 
virtual void calcDiff (const std::shared_ptr< DifferentialActionDataAbstract > &data, const Eigen::Ref< const VectorXs > &x, const Eigen::Ref< const VectorXs > &u)
 Compute the derivatives of the contact dynamics, and cost function.
 
virtual bool checkData (const std::shared_ptr< DifferentialActionDataAbstract > &data)
 Check that the given data belongs to the contact forward-dynamics data.
 
virtual std::shared_ptr< DifferentialActionDataAbstractcreateData ()
 Create the contact forward-dynamics data.
 
const std::shared_ptr< ActuationModelAbstract > & get_actuation () const
 Return the actuation model.
 
const VectorXs & get_armature () const
 Return the armature vector.
 
const std::shared_ptr< ConstraintModelManager > & get_constraints () const
 Return the constraint model manager.
 
const std::shared_ptr< ContactModelMultiple > & get_contacts () const
 Return the contact model.
 
const std::shared_ptr< CostModelSum > & get_costs () const
 Return the cost model.
 
const Scalar get_damping_factor () const
 Return the damping factor used in operational space inertia matrix.
 
virtual const VectorXs & get_g_lb () const
 Return the lower bound of the inequality constraints.
 
virtual const VectorXs & get_g_ub () const
 Return the upper bound of the inequality constraints.
 
virtual std::size_t get_ng () const
 Return the number of inequality constraints.
 
virtual std::size_t get_ng_T () const
 Return the number of equality terminal constraints.
 
virtual std::size_t get_nh () const
 Return the number of equality constraints.
 
virtual std::size_t get_nh_T () const
 Return the number of equality terminal constraints.
 
pinocchio::ModelTpl< Scalar > & get_pinocchio () const
 Return the Pinocchio model.
 
virtual void print (std::ostream &os) const
 Print relevant information of the contact forward-dynamics model.
 
virtual void quasiStatic (const std::shared_ptr< DifferentialActionDataAbstract > &data, Eigen::Ref< VectorXs > u, const Eigen::Ref< const VectorXs > &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
 Computes the quasic static commands.
 
void set_armature (const VectorXs &armature)
 Modify the armature vector.
 
void set_damping_factor (const Scalar damping)
 Modify the damping factor used in operational space inertia matrix.
 
- Public Member Functions inherited from DifferentialActionModelAbstractTpl< _Scalar >
 DifferentialActionModelAbstractTpl (std::shared_ptr< StateAbstract > state, const std::size_t nu, const std::size_t nr=0, const std::size_t ng=0, const std::size_t nh=0, const std::size_t ng_T=0, const std::size_t nh_T=0)
 Initialize the differential action model.
 
bool get_has_control_limits () const
 Indicates if there are defined control limits.
 
std::size_t get_nr () const
 Return the dimension of the cost-residual vector.
 
std::size_t get_nu () const
 Return the dimension of the control input.
 
const std::shared_ptr< StateAbstract > & get_state () const
 Return the state.
 
const VectorXs & get_u_lb () const
 Return the control lower bound.
 
const VectorXs & get_u_ub () const
 Return the control upper bound.
 
VectorXs quasiStatic_x (const std::shared_ptr< DifferentialActionDataAbstract > &data, const VectorXs &x, const std::size_t maxiter=100, const Scalar tol=Scalar(1e-9))
 
void set_g_lb (const VectorXs &g_lb)
 Modify the lower bound of the inequality constraints.
 
void set_g_ub (const VectorXs &g_ub)
 Modify the upper bound of the inequality constraints.
 
void set_u_lb (const VectorXs &u_lb)
 Modify the control lower bounds.
 
void set_u_ub (const VectorXs &u_ub)
 Modify the control upper bounds.
 

Public Attributes

EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef _Scalar Scalar
 
- Public Attributes inherited from DifferentialActionModelAbstractTpl< _Scalar >
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef _Scalar Scalar
 

Protected Attributes

VectorXs g_lb_
 Lower bound of the inequality constraints.
 
VectorXs g_ub_
 < Lower bound of the inequality constraints
 
std::size_t nu_
 < Upper bound of the inequality constraints
 
std::shared_ptr< StateAbstractstate_
 < Control dimension
 
- Protected Attributes inherited from DifferentialActionModelAbstractTpl< _Scalar >
VectorXs g_lb_
 Lower bound of the inequality constraints.
 
VectorXs g_ub_
 Lower bound of the inequality constraints.
 
bool has_control_limits_
 
std::size_t ng_
 Number of inequality constraints.
 
std::size_t ng_T_
 Number of inequality terminal constraints.
 
std::size_t nh_
 Number of equality constraints.
 
std::size_t nh_T_
 Number of equality terminal constraints.
 
std::size_t nr_
 Dimension of the cost residual.
 
std::size_t nu_
 Control dimension.
 
std::shared_ptr< StateAbstractstate_
 Model of the state.
 
VectorXs u_lb_
 Lower control limits.
 
VectorXs u_ub_
 Upper control limits.
 
VectorXs unone_
 Neutral state.
 

Additional Inherited Members

- Protected Member Functions inherited from DifferentialActionModelAbstractTpl< _Scalar >
void update_has_control_limits ()
 Update the status of the control limits (i.e. if there are defined limits)
 

Detailed Description

template<typename _Scalar>
class crocoddyl::DifferentialActionModelContactFwdDynamicsTpl< _Scalar >

Differential action model for contact forward dynamics in multibody systems.

This class implements contact forward dynamics given a stack of rigid-contacts described in ContactModelMultipleTpl, i.e.,

\[ \left[\begin{matrix}\dot{\mathbf{v}} \\ -\boldsymbol{\lambda}\end{matrix}\right] = \left[\begin{matrix}\mathbf{M} & \mathbf{J}^{\top}_c \\ {\mathbf{J}_{c}} & \mathbf{0} \end{matrix}\right]^{-1} \left[\begin{matrix}\boldsymbol{\tau}_b \\ -\mathbf{a}_0 \\\end{matrix}\right], \]

where \(\mathbf{q}\in Q\), \(\mathbf{v}\in\mathbb{R}^{nv}\) are the configuration point and generalized velocity (its tangent vector), respectively; \(\boldsymbol{\tau}_b=\boldsymbol{\tau} - \mathbf{h}(\mathbf{q},\mathbf{v})\) is the bias forces that depends on the torque inputs \(\boldsymbol{\tau}\) and the Coriolis effect and gravity field \(\mathbf{h}(\mathbf{q},\mathbf{v})\); \(\mathbf{J}_c\in\mathbb{R}^{nc\times nv}\) is the contact Jacobian expressed in the local frame; and \(\mathbf{a}_0\in\mathbb{R}^{nc}\) is the desired acceleration in the constraint space. To improve stability in the numerical integration, we define PD gains that are similar in spirit to Baumgarte stabilization:

\[ \mathbf{a}_0 = \mathbf{a}_{\lambda(c)} - \alpha \,^oM^{ref}_{\lambda(c)}\ominus\,^oM_{\lambda(c)} - \beta\mathbf{v}_{\lambda(c)}, \]

where \(\mathbf{v}_{\lambda(c)}\), \(\mathbf{a}_{\lambda(c)}\) are the spatial velocity and acceleration at the parent body of the contact \(\lambda(c)\), respectively; \(\alpha\) and \(\beta\) are the stabilization gains; \(\,^oM^{ref}_{\lambda(c)}\ominus\,^oM_{\lambda(c)}\) is the \(\mathbb{SE}(3)\) inverse composition between the reference contact placement and the current one.

The derivatives of the system acceleration and contact forces are computed efficiently based on the analytical derivatives of Recursive Newton Euler Algorithm (RNEA) as described in [mastalli-icra20]. Note that the algorithm for computing the RNEA derivatives is described in [carpentier-rss18].

The stack of cost and constraint functions are implemented in CostModelSumTpl and ConstraintModelAbstractTpl, respectively. The computation of the contact dynamics and its derivatives are carrying out inside calc() and calcDiff() functions, respectively. It is also important to remark that calcDiff() computes the derivatives using the latest stored values by calc(). Thus, we need to run calc() first.

See also
DifferentialActionModelAbstractTpl, calc(), calcDiff(), createData()

Definition at line 74 of file contact-fwddyn.hpp.

Member Typedef Documentation

◆ Base

template<typename _Scalar >
typedef DifferentialActionModelAbstractTpl<Scalar> Base

Definition at line 80 of file contact-fwddyn.hpp.

◆ Data

template<typename _Scalar >
typedef DifferentialActionDataContactFwdDynamicsTpl<Scalar> Data

Definition at line 81 of file contact-fwddyn.hpp.

◆ MathBase

template<typename _Scalar >
typedef MathBaseTpl<Scalar> MathBase

Definition at line 82 of file contact-fwddyn.hpp.

◆ StateMultibody

template<typename _Scalar >
typedef StateMultibodyTpl<Scalar> StateMultibody

Definition at line 83 of file contact-fwddyn.hpp.

◆ CostModelSum

template<typename _Scalar >
typedef CostModelSumTpl<Scalar> CostModelSum

Definition at line 84 of file contact-fwddyn.hpp.

◆ ConstraintModelManager

template<typename _Scalar >
typedef ConstraintModelManagerTpl<Scalar> ConstraintModelManager

Definition at line 85 of file contact-fwddyn.hpp.

◆ ContactModelMultiple

template<typename _Scalar >
typedef ContactModelMultipleTpl<Scalar> ContactModelMultiple

Definition at line 86 of file contact-fwddyn.hpp.

◆ ActuationModelAbstract

template<typename _Scalar >
typedef ActuationModelAbstractTpl<Scalar> ActuationModelAbstract

Definition at line 87 of file contact-fwddyn.hpp.

◆ DifferentialActionDataAbstract

template<typename _Scalar >
typedef DifferentialActionDataAbstractTpl<Scalar> DifferentialActionDataAbstract

Definition at line 89 of file contact-fwddyn.hpp.

◆ VectorXs

template<typename _Scalar >
typedef MathBase::VectorXs VectorXs

Definition at line 90 of file contact-fwddyn.hpp.

◆ MatrixXs

template<typename _Scalar >
typedef MathBase::MatrixXs MatrixXs

Definition at line 91 of file contact-fwddyn.hpp.

Constructor & Destructor Documentation

◆ DifferentialActionModelContactFwdDynamicsTpl() [1/2]

template<typename _Scalar >
DifferentialActionModelContactFwdDynamicsTpl ( std::shared_ptr< StateMultibody state,
std::shared_ptr< ActuationModelAbstract actuation,
std::shared_ptr< ContactModelMultiple contacts,
std::shared_ptr< CostModelSum costs,
const Scalar  JMinvJt_damping = Scalar(0.),
const bool  enable_force = false 
)

Initialize the contact forward-dynamics action model.

It describes the dynamics evolution of a multibody system under rigid-contact constraints defined by ContactModelMultipleTpl. It computes the cost described in CostModelSumTpl.

Parameters
[in]stateState of the multibody system
[in]actuationActuation model
[in]contactsStack of rigid contact
[in]costsStack of cost functions
[in]JMinvJt_dampingDamping term used in operational space inertia matrix (default 0.)
[in]enable_forceEnable the computation of the contact force derivatives (default false)

◆ DifferentialActionModelContactFwdDynamicsTpl() [2/2]

template<typename _Scalar >
DifferentialActionModelContactFwdDynamicsTpl ( std::shared_ptr< StateMultibody state,
std::shared_ptr< ActuationModelAbstract actuation,
std::shared_ptr< ContactModelMultiple contacts,
std::shared_ptr< CostModelSum costs,
std::shared_ptr< ConstraintModelManager constraints,
const Scalar  JMinvJt_damping = Scalar(0.),
const bool  enable_force = false 
)

Initialize the contact forward-dynamics action model.

It describes the dynamics evolution of a multibody system under rigid-contact constraints defined by ContactModelMultipleTpl. It computes the cost described in CostModelSumTpl.

Parameters
[in]stateState of the multibody system
[in]actuationActuation model
[in]contactsStack of rigid contact
[in]costsStack of cost functions
[in]constraintsStack of constraints
[in]JMinvJt_dampingDamping term used in operational space inertia matrix (default 0.)
[in]enable_forceEnable the computation of the contact force derivatives (default false)

Member Function Documentation

◆ calc() [1/2]

template<typename _Scalar >
virtual void calc ( const std::shared_ptr< DifferentialActionDataAbstract > &  data,
const Eigen::Ref< const VectorXs > &  x,
const Eigen::Ref< const VectorXs > &  u 
)
virtual

Compute the system acceleration, and cost value.

It computes the system acceleration using the contact dynamics.

Parameters
[in]dataContact forward-dynamics data
[in]xState point \(\mathbf{x}\in\mathbb{R}^{ndx}\)
[in]uControl input \(\mathbf{u}\in\mathbb{R}^{nu}\)

Implements DifferentialActionModelAbstractTpl< _Scalar >.

◆ calc() [2/2]

template<typename _Scalar >
virtual void calc ( const std::shared_ptr< DifferentialActionDataAbstract > &  data,
const Eigen::Ref< const VectorXs > &  x 
)
virtual

Compute the total cost value for nodes that depends only on the state.

It updates the total cost and the system acceleration is not updated as it is expected to be zero. Additionally, it does not update the contact forces. This function is used in the terminal nodes of an optimal control problem.

Parameters
[in]dataContact forward-dynamics data
[in]xState point \(\mathbf{x}\in\mathbb{R}^{ndx}\)

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ calcDiff() [1/2]

template<typename _Scalar >
virtual void calcDiff ( const std::shared_ptr< DifferentialActionDataAbstract > &  data,
const Eigen::Ref< const VectorXs > &  x,
const Eigen::Ref< const VectorXs > &  u 
)
virtual

Compute the derivatives of the contact dynamics, and cost function.

Parameters
[in]dataContact forward-dynamics data
[in]xState point \(\mathbf{x}\in\mathbb{R}^{ndx}\)
[in]uControl input \(\mathbf{u}\in\mathbb{R}^{nu}\)

Implements DifferentialActionModelAbstractTpl< _Scalar >.

◆ calcDiff() [2/2]

template<typename _Scalar >
virtual void calcDiff ( const std::shared_ptr< DifferentialActionDataAbstract > &  data,
const Eigen::Ref< const VectorXs > &  x 
)
virtual

Compute the derivatives of the cost functions with respect to the state only.

It updates the derivatives of the cost function with respect to the state only. Additionally, it does not update the contact forces derivatives. This function is used in the terminal nodes of an optimal control problem.

Parameters
[in]dataContact forward-dynamics data
[in]xState point \(\mathbf{x}\in\mathbb{R}^{ndx}\)

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ createData()

template<typename _Scalar >
virtual std::shared_ptr< DifferentialActionDataAbstract > createData ( )
virtual

Create the contact forward-dynamics data.

Returns
contact forward-dynamics data

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ checkData()

template<typename _Scalar >
virtual bool checkData ( const std::shared_ptr< DifferentialActionDataAbstract > &  data)
virtual

Check that the given data belongs to the contact forward-dynamics data.

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ quasiStatic()

template<typename _Scalar >
virtual void quasiStatic ( const std::shared_ptr< DifferentialActionDataAbstract > &  data,
Eigen::Ref< VectorXs >  u,
const Eigen::Ref< const VectorXs > &  x,
const std::size_t  maxiter = 100,
const Scalar  tol = Scalar(1e-9) 
)
virtual

Computes the quasic static commands.

The quasic static commands are the ones produced for a the reference posture as an equilibrium point, i.e. for \(\mathbf{f}(\mathbf{q},\mathbf{v}=\mathbf{0},\mathbf{u})=\mathbf{0}\)

Parameters
[in]dataDifferential action data
[out]uQuasic static commands
[in]xState point (velocity has to be zero)
[in]maxiterMaximum allowed number of iterations
[in]tolTolerance

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ get_ng()

template<typename _Scalar >
virtual std::size_t get_ng ( ) const
virtual

Return the number of inequality constraints.

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ get_nh()

template<typename _Scalar >
virtual std::size_t get_nh ( ) const
virtual

Return the number of equality constraints.

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ get_ng_T()

template<typename _Scalar >
virtual std::size_t get_ng_T ( ) const
virtual

Return the number of equality terminal constraints.

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ get_nh_T()

template<typename _Scalar >
virtual std::size_t get_nh_T ( ) const
virtual

Return the number of equality terminal constraints.

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ get_g_lb()

template<typename _Scalar >
virtual const VectorXs & get_g_lb ( ) const
virtual

Return the lower bound of the inequality constraints.

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ get_g_ub()

template<typename _Scalar >
virtual const VectorXs & get_g_ub ( ) const
virtual

Return the upper bound of the inequality constraints.

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

◆ print()

template<typename _Scalar >
virtual void print ( std::ostream &  os) const
virtual

Print relevant information of the contact forward-dynamics model.

Parameters
[out]osOutput stream object

Reimplemented from DifferentialActionModelAbstractTpl< _Scalar >.

Member Data Documentation

◆ Scalar

template<typename _Scalar >
EIGEN_MAKE_ALIGNED_OPERATOR_NEW typedef _Scalar Scalar

Definition at line 79 of file contact-fwddyn.hpp.

◆ g_lb_

template<typename _Scalar >
VectorXs g_lb_
protected

Lower bound of the inequality constraints.

Definition at line 365 of file diff-action-base.hpp.

◆ g_ub_

template<typename _Scalar >
VectorXs g_ub_
protected

< Lower bound of the inequality constraints

Definition at line 366 of file diff-action-base.hpp.

◆ nu_

template<typename _Scalar >
std::size_t nu_
protected

< Upper bound of the inequality constraints

Definition at line 357 of file diff-action-base.hpp.

◆ state_

template<typename _Scalar >
std::shared_ptr<StateAbstract> state_
protected

< Control dimension

Definition at line 363 of file diff-action-base.hpp.


The documentation for this class was generated from the following file: