pinocchio  3.7.0
A fast and flexible implementation of Rigid Body Dynamics algorithms and their analytical derivatives
 
Loading...
Searching...
No Matches
matrix.hpp
1//
2// Copyright (c) 2016-2020 CNRS INRIA
3//
4
5#ifndef __pinocchio_math_matrix_hpp__
6#define __pinocchio_math_matrix_hpp__
7
8#include "pinocchio/macros.hpp"
9#include "pinocchio/math/fwd.hpp"
10#include "pinocchio/utils/static-if.hpp"
11
12#include <boost/type_traits.hpp>
13#include <Eigen/Dense>
14
15namespace pinocchio
16{
17
18 template<typename Derived>
19 inline bool hasNaN(const Eigen::DenseBase<Derived> & m)
20 {
21 return !((m.derived().array() == m.derived().array()).all());
22 }
23
24 namespace internal
25 {
26 template<
27 typename MatrixLike,
28 bool value = is_floating_point<typename MatrixLike::Scalar>::value>
29 struct isZeroAlgo
30 {
31 typedef typename MatrixLike::Scalar Scalar;
32 typedef typename MatrixLike::RealScalar RealScalar;
33
34 static bool run(
35 const Eigen::MatrixBase<MatrixLike> & mat,
36 const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
37 {
38 return mat.isZero(prec);
39 }
40 };
41
42 template<typename MatrixLike>
43 struct isZeroAlgo<MatrixLike, false>
44 {
45 typedef typename MatrixLike::Scalar Scalar;
46 typedef typename MatrixLike::RealScalar RealScalar;
47
48 static bool run(
49 const Eigen::MatrixBase<MatrixLike> & /*vec*/,
50 const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
51 {
52 PINOCCHIO_UNUSED_VARIABLE(prec);
53 return true;
54 }
55 };
56 } // namespace internal
57
58 template<typename MatrixLike>
59 inline bool isZero(
60 const Eigen::MatrixBase<MatrixLike> & m,
61 const typename MatrixLike::RealScalar & prec =
62 Eigen::NumTraits<typename MatrixLike::Scalar>::dummy_precision())
63 {
64 return internal::isZeroAlgo<MatrixLike>::run(m, prec);
65 }
66
67 template<typename M1, typename M2>
69 {
70#if EIGEN_VERSION_AT_LEAST(3, 2, 90)
71 typedef typename Eigen::Product<M1, M2> type;
72#else
73 typedef typename Eigen::ProductReturnType<M1, M2>::Type type;
74#endif
75 };
76
77 template<typename Scalar, typename Matrix>
79 {
80#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
81 typedef Eigen::CwiseBinaryOp<
82 EIGEN_CAT(EIGEN_CAT(Eigen::internal::scalar_, product), _op) < Scalar,
83 typename Eigen::internal::traits<Matrix>::Scalar>,
84 const typename Eigen::internal::plain_constant_type<Matrix, Scalar>::type,
85 const Matrix > type;
86#elif EIGEN_VERSION_AT_LEAST(3, 2, 90)
87 typedef Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix> type;
88#else
89 typedef const Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix>
90 type;
91#endif
92 };
93
94 template<typename Matrix, typename Scalar>
96 {
97#if EIGEN_VERSION_AT_LEAST(3, 3, 0)
98 typedef Eigen::CwiseBinaryOp<
99 EIGEN_CAT(EIGEN_CAT(Eigen::internal::scalar_, product), _op) <
100 typename Eigen::internal::traits<Matrix>::Scalar,
101 Scalar>,
102 const Matrix,
103 const typename Eigen::internal::plain_constant_type<Matrix, Scalar>::type > type;
104#elif EIGEN_VERSION_AT_LEAST(3, 2, 90)
105 typedef Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix> type;
106#else
107 typedef const Eigen::CwiseUnaryOp<Eigen::internal::scalar_multiple_op<Scalar>, const Matrix>
108 type;
109#endif
110 };
111
112 namespace internal
113 {
114 template<
115 typename MatrixLike,
117 struct isUnitaryAlgo
118 {
119 typedef typename MatrixLike::Scalar Scalar;
120 typedef typename MatrixLike::RealScalar RealScalar;
121
122 static bool run(
123 const Eigen::MatrixBase<MatrixLike> & mat,
124 const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
125 {
126 return mat.isUnitary(prec);
127 }
128 };
129
130 template<typename MatrixLike>
131 struct isUnitaryAlgo<MatrixLike, false>
132 {
133 typedef typename MatrixLike::Scalar Scalar;
134 typedef typename MatrixLike::RealScalar RealScalar;
135
136 static bool run(
137 const Eigen::MatrixBase<MatrixLike> & /*vec*/,
138 const RealScalar & prec = Eigen::NumTraits<Scalar>::dummy_precision())
139 {
140 PINOCCHIO_UNUSED_VARIABLE(prec);
141 return true;
142 }
143 };
144 } // namespace internal
145
154 template<typename MatrixLike>
155 inline bool isUnitary(
156 const Eigen::MatrixBase<MatrixLike> & mat,
157 const typename MatrixLike::RealScalar & prec =
158 Eigen::NumTraits<typename MatrixLike::Scalar>::dummy_precision())
159 {
160 return internal::isUnitaryAlgo<MatrixLike>::run(mat, prec);
161 }
162
163 namespace internal
164 {
165 template<
166 typename VectorLike,
167 bool value = is_floating_point<typename VectorLike::Scalar>::value>
168 struct isNormalizedAlgo
169 {
170 typedef typename VectorLike::Scalar Scalar;
171 typedef typename VectorLike::RealScalar RealScalar;
172
173 static bool run(
174 const Eigen::MatrixBase<VectorLike> & vec,
175 const RealScalar & prec = Eigen::NumTraits<RealScalar>::dummy_precision())
176 {
177 return math::fabs(static_cast<RealScalar>(vec.norm() - RealScalar(1))) <= prec;
178 }
179 };
180
181 template<typename VectorLike>
182 struct isNormalizedAlgo<VectorLike, false>
183 {
184 typedef typename VectorLike::Scalar Scalar;
185 typedef typename VectorLike::RealScalar RealScalar;
186
187 static bool run(
188 const Eigen::MatrixBase<VectorLike> & /*vec*/,
189 const RealScalar & prec = Eigen::NumTraits<RealScalar>::dummy_precision())
190 {
191 PINOCCHIO_UNUSED_VARIABLE(prec);
192 return true;
193 }
194 };
195 } // namespace internal
196
205 template<typename VectorLike>
206 inline bool isNormalized(
207 const Eigen::MatrixBase<VectorLike> & vec,
208 const typename VectorLike::RealScalar & prec =
209 Eigen::NumTraits<typename VectorLike::Scalar>::dummy_precision())
210 {
212 return internal::isNormalizedAlgo<VectorLike>::run(vec, prec);
213 }
214
215 namespace internal
216 {
217 template<
218 typename VectorLike,
219 bool value = is_floating_point<typename VectorLike::Scalar>::value>
220 struct normalizeAlgo
221 {
222 static void run(const Eigen::MatrixBase<VectorLike> & vec)
223 {
224 return vec.const_cast_derived().normalize();
225 }
226 };
227
228 template<typename VectorLike>
229 struct normalizeAlgo<VectorLike, false>
230 {
231 static void run(const Eigen::MatrixBase<VectorLike> & vec)
232 {
233 using namespace internal;
234 typedef typename VectorLike::RealScalar RealScalar;
235 typedef typename VectorLike::Scalar Scalar;
236 const RealScalar z = vec.squaredNorm();
237 const Scalar sqrt_z = if_then_else(GT, z, Scalar(0), math::sqrt(z), Scalar(1));
238 vec.const_cast_derived() /= sqrt_z;
239 }
240 };
241 } // namespace internal
242
248 template<typename VectorLike>
249 inline void normalize(const Eigen::MatrixBase<VectorLike> & vec)
250 {
252 internal::normalizeAlgo<VectorLike>::run(vec.const_cast_derived());
253 }
254
255 namespace internal
256 {
257 template<typename Scalar>
258 struct CallCorrectMatrixInverseAccordingToScalar
259 {
260 template<typename MatrixIn, typename MatrixOut>
261 static void
262 run(const Eigen::MatrixBase<MatrixIn> & m_in, const Eigen::MatrixBase<MatrixOut> & dest)
263 {
264 MatrixOut & dest_ = PINOCCHIO_EIGEN_CONST_CAST(MatrixOut, dest);
265 dest_.noalias() = m_in.inverse();
266 }
267 };
268
269 } // namespace internal
270
271 template<typename MatrixIn, typename MatrixOut>
272 inline void
273 inverse(const Eigen::MatrixBase<MatrixIn> & m_in, const Eigen::MatrixBase<MatrixOut> & dest)
274 {
275 MatrixOut & dest_ = PINOCCHIO_EIGEN_CONST_CAST(MatrixOut, dest);
276 internal::CallCorrectMatrixInverseAccordingToScalar<typename MatrixIn::Scalar>::run(
277 m_in, dest_);
278 }
279
280} // namespace pinocchio
281
282#endif // #ifndef __pinocchio_math_matrix_hpp__
Main pinocchio namespace.
Definition treeview.dox:11
void normalize(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, const Eigen::MatrixBase< ConfigVectorType > &qout)
Normalize a configuration vector.
bool isNormalized(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, const Eigen::MatrixBase< ConfigVectorType > &q, const Scalar &prec=Eigen::NumTraits< Scalar >::dummy_precision())
Check whether a configuration vector is normalized within the given precision provided by prec.
bool isUnitary(const Eigen::MatrixBase< MatrixLike > &mat, const typename MatrixLike::RealScalar &prec=Eigen::NumTraits< typename MatrixLike::Scalar >::dummy_precision())
Check whether the input matrix is Unitary within the given precision.
Definition matrix.hpp:155