|
virtual | ~GenericTransformation () |
|
void | reference (const Transform3f &reference) |
| Set desired relative transformation of joint2 in joint1. More...
|
|
Transform3f | reference () const |
| Get desired relative orientation. More...
|
|
void | joint1 (const JointConstPtr_t &joint) |
| Set joint 1. More...
|
|
JointConstPtr_t | joint1 () const |
| Get joint 1. More...
|
|
void | joint2 (const JointConstPtr_t &joint) |
| Set joint 2. More...
|
|
JointConstPtr_t | joint2 () const |
| Get joint 2. More...
|
|
void | frame1InJoint1 (const Transform3f &M) |
| Set position of frame 1 in joint 1. More...
|
|
const Transform3f & | frame1InJoint1 () const |
| Get position of frame 1 in joint 1. More...
|
|
void | frame2InJoint2 (const Transform3f &M) |
| Set position of frame 2 in joint 2. More...
|
|
const Transform3f & | frame2InJoint2 () const |
| Get position of frame 2 in joint 2. More...
|
|
virtual std::ostream & | print (std::ostream &o) const |
| Display object in a stream. More...
|
|
| GenericTransformation (const std::string &name, const DevicePtr_t &robot, std::vector< bool > mask) |
| Constructor. More...
|
|
virtual | ~DifferentiableFunction () |
|
LiegroupElement | operator() (vectorIn_t argument) const |
| Evaluate the function at a given parameter. More...
|
|
void | value (LiegroupElementRef result, vectorIn_t argument) const |
| Evaluate the function at a given parameter. More...
|
|
void | jacobian (matrixOut_t jacobian, vectorIn_t argument) const |
| Computes the jacobian. More...
|
|
const ArrayXb & | activeParameters () const |
| Returns a vector of booleans that indicates whether the corresponding configuration parameter influences this constraints. More...
|
|
const ArrayXb & | activeDerivativeParameters () const |
| Returns a vector of booleans that indicates whether the corresponding velocity parameter influences this constraints. More...
|
|
size_type | inputSize () const |
| Get dimension of input vector. More...
|
|
size_type | inputDerivativeSize () const |
| Get dimension of input derivative vector. More...
|
|
LiegroupSpacePtr_t | outputSpace () const |
| Get output element. More...
|
|
size_type | outputSize () const |
| Get dimension of output vector. More...
|
|
size_type | outputDerivativeSize () const |
| Get dimension of output derivative vector. More...
|
|
const std::string & | name () const |
| Get function name. More...
|
|
std::string | context () const |
|
void | context (const std::string &c) |
|
void | finiteDifferenceForward (matrixOut_t jacobian, vectorIn_t arg, DevicePtr_t robot=DevicePtr_t(), value_type eps=std::sqrt(Eigen::NumTraits< value_type >::epsilon())) const |
| Approximate the jacobian using forward finite difference. More...
|
|
void | finiteDifferenceCentral (matrixOut_t jacobian, vectorIn_t arg, DevicePtr_t robot=DevicePtr_t(), value_type eps=std::sqrt(Eigen::NumTraits< value_type >::epsilon())) const |
| Approximate the jacobian using forward finite difference. More...
|
|
|
static Ptr_t | create (const std::string &name, const DevicePtr_t &robot, const JointConstPtr_t &joint2, const Transform3f &reference, std::vector< bool > mask=std::vector< bool >(DerSize, true)) |
| Object builder for absolute functions. More...
|
|
static Ptr_t | create (const std::string &name, const DevicePtr_t &robot, const JointConstPtr_t &joint2, const Transform3f &frame2, const Transform3f &frame1, std::vector< bool > mask=std::vector< bool >(DerSize, true)) |
| Object builder for absolute functions. More...
|
|
static Ptr_t | create (const std::string &name, const DevicePtr_t &robot, const JointConstPtr_t &joint1, const JointConstPtr_t &joint2, const Transform3f &reference, std::vector< bool > mask=std::vector< bool >(DerSize, true)) |
| Object builder for relative functions. More...
|
|
static Ptr_t | create (const std::string &name, const DevicePtr_t &robot, const JointConstPtr_t &joint1, const JointConstPtr_t &joint2, const Transform3f &frame1, const Transform3f &frame2, std::vector< bool > mask=std::vector< bool >(DerSize, true)) |
| Object builder for relative functions. More...
|
|
|
void | init (const WkPtr_t &self) |
|
virtual void | impl_compute (LiegroupElementRef result, ConfigurationIn_t argument) const throw () |
| Compute value of error. More...
|
|
virtual void | impl_jacobian (matrixOut_t jacobian, ConfigurationIn_t arg) const throw () |
|
| DifferentiableFunction (size_type sizeInput, size_type sizeInputDerivative, size_type sizeOutput, std::string name=std::string()) |
| Concrete class constructor should call this constructor. More...
|
|
| DifferentiableFunction (size_type sizeInput, size_type sizeInputDerivative, const LiegroupSpacePtr_t &outputSpace, std::string name=std::string()) |
| Concrete class constructor should call this constructor. More...
|
|
virtual void | impl_compute (LiegroupElementRef result, vectorIn_t argument) const =0 |
| User implementation of function evaluation. More...
|
|
virtual void | impl_jacobian (matrixOut_t jacobian, vectorIn_t arg) const =0 |
|
template<int _Options>
class hpp::constraints::GenericTransformation< _Options >
GenericTransformation class encapsulates 6 possible differentiable functions: Position, Orientation, Transformation and their relative versions RelativePosition, RelativeOrientation, RelativeTransformation.
These functions compute the position of frame GenericTransformation::frame2InJoint2 in joint GenericTransformation::joint2 frame, in the frame GenericTransformation::frame1InJoint1 in GenericTransformation::joint1 frame. For absolute functions, GenericTransformation::joint1 is NULL and joint1 frame is the world frame.
The value of the RelativeTransformation function is a 6-dimensional vector. The 3 first coordinates are the position of the center of the second frame expressed in the first frame. The 3 last coordinates are the log of the orientation of frame 2 in frame 1.
\begin{equation*} f (\mathbf{q}) = \left(\begin{array}{c} \mathbf{translation}\left(T_{1/J_1}^T T_1^T T_2 T_{2/J_2}\right)\\ \log \left((R_1 R_{1/J_1})^T R_2 R_{2/J_2}\right) \end{array}\right) \end{equation*}
The Jacobian is given by
\begin{equation*} \left(\begin{array}{c} (R_1 R_{1/J_1})^T \left(\left[R_2 t_{2/J_2} + t_2 - t_1\right]_{\times} R_1 J_{1\,\omega} - \left[R_2 t_{2/J_2}\right]_{\times} R_2 J_{2\,\omega} + R_2 J_{2\,\mathbf{v}} - R_1 J_{1\,\mathbf{v}}\right) \\ J_{log}\left((R_1 R_{1/J_1})^T R_2 R_{2/J_2}\right)(R_1 R_{1/J_1})^T (R_2 J_{2\,\omega} - R_1 J_{1\,\omega}) \end{array}\right) \end{equation*}