coal  3.0.1
Coal, The Collision Detection Library. Previously known as HPP-FCL, fork of FCL -- The Flexible Collision Library
geometric_shapes.h
Go to the documentation of this file.
1 /*
2  * Software License Agreement (BSD License)
3  *
4  * Copyright (c) 2011-2014, Willow Garage, Inc.
5  * Copyright (c) 2014-2015, Open Source Robotics Foundation
6  * All rights reserved.
7  *
8  * Redistribution and use in source and binary forms, with or without
9  * modification, are permitted provided that the following conditions
10  * are met:
11  *
12  * * Redistributions of source code must retain the above copyright
13  * notice, this list of conditions and the following disclaimer.
14  * * Redistributions in binary form must reproduce the above
15  * copyright notice, this list of conditions and the following
16  * disclaimer in the documentation and/or other materials provided
17  * with the distribution.
18  * * Neither the name of Open Source Robotics Foundation nor the names of its
19  * contributors may be used to endorse or promote products derived
20  * from this software without specific prior written permission.
21  *
22  * THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS
23  * "AS IS" AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT
24  * LIMITED TO, THE IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS
25  * FOR A PARTICULAR PURPOSE ARE DISCLAIMED. IN NO EVENT SHALL THE
26  * COPYRIGHT OWNER OR CONTRIBUTORS BE LIABLE FOR ANY DIRECT, INDIRECT,
27  * INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL DAMAGES (INCLUDING,
28  * BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR SERVICES;
29  * LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
30  * CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT
31  * LIABILITY, OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN
32  * ANY WAY OUT OF THE USE OF THIS SOFTWARE, EVEN IF ADVISED OF THE
33  * POSSIBILITY OF SUCH DAMAGE.
34  */
35 
38 #ifndef COAL_GEOMETRIC_SHAPES_H
39 #define COAL_GEOMETRIC_SHAPES_H
40 
41 #include <vector>
42 #include <memory>
43 
44 #include <boost/math/constants/constants.hpp>
45 
46 #include "coal/collision_object.h"
47 #include "coal/data_types.h"
48 
49 #ifdef COAL_HAS_QHULL
50 namespace orgQhull {
51 class Qhull;
52 }
53 #endif
54 
55 namespace coal {
56 
59  public:
60  ShapeBase() {}
61 
63  ShapeBase(const ShapeBase& other)
64  : CollisionGeometry(other),
65  m_swept_sphere_radius(other.m_swept_sphere_radius) {}
66 
67  ShapeBase& operator=(const ShapeBase& other) = default;
68 
69  virtual ~ShapeBase() {};
70 
72  OBJECT_TYPE getObjectType() const { return OT_GEOM; }
73 
77  if (radius < 0) {
78  COAL_THROW_PRETTY("Swept-sphere radius must be positive.",
79  std::invalid_argument);
80  }
81  this->m_swept_sphere_radius = radius;
82  }
83 
86  Scalar getSweptSphereRadius() const { return this->m_swept_sphere_radius; }
87 
88  protected:
100  Scalar m_swept_sphere_radius{0};
101 };
102 
106 
109  public:
110  TriangleP() {};
111 
112  TriangleP(const Vec3s& a_, const Vec3s& b_, const Vec3s& c_)
113  : ShapeBase(), a(a_), b(b_), c(c_) {}
114 
115  TriangleP(const TriangleP& other)
116  : ShapeBase(other), a(other.a), b(other.b), c(other.c) {}
117 
119  virtual TriangleP* clone() const { return new TriangleP(*this); };
120 
123 
124  NODE_TYPE getNodeType() const { return GEOM_TRIANGLE; }
125 
126  // std::pair<ShapeBase*, Transform3s> inflated(const Scalar value) const
127  // {
128  // if (value == 0) return std::make_pair(new TriangleP(*this),
129  // Transform3s()); Vec3s AB(b - a), BC(c - b), CA(a - c); AB.normalize();
130  // BC.normalize();
131  // CA.normalize();
132  //
133  // Vec3s new_a(a + value * Vec3s(-AB + CA).normalized());
134  // Vec3s new_b(b + value * Vec3s(-BC + AB).normalized());
135  // Vec3s new_c(c + value * Vec3s(-CA + BC).normalized());
136  //
137  // return std::make_pair(new TriangleP(new_a, new_b, new_c),
138  // Transform3s());
139  // }
140  //
141  // Scalar minInflationValue() const
142  // {
143  // return (std::numeric_limits<Scalar>::max)(); // TODO(jcarpent):
144  // implement
145  // }
146 
147  Vec3s a, b, c;
148 
149  private:
150  virtual bool isEqual(const CollisionGeometry& _other) const {
151  const TriangleP* other_ptr = dynamic_cast<const TriangleP*>(&_other);
152  if (other_ptr == nullptr) return false;
153  const TriangleP& other = *other_ptr;
154 
155  return a == other.a && b == other.b && c == other.c &&
156  getSweptSphereRadius() == other.getSweptSphereRadius();
157  }
158 
159  public:
160  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
161 };
162 
164 class COAL_DLLAPI Box : public ShapeBase {
165  public:
167  : ShapeBase(), halfSide(x / 2, y / 2, z / 2) {}
168 
169  Box(const Vec3s& side_) : ShapeBase(), halfSide(side_ / 2) {}
170 
171  Box(const Box& other) : ShapeBase(other), halfSide(other.halfSide) {}
172 
173  Box& operator=(const Box& other) {
174  if (this == &other) return *this;
175 
176  this->halfSide = other.halfSide;
177  return *this;
178  }
179 
181  virtual Box* clone() const { return new Box(*this); };
182 
184  Box() {}
185 
188 
191 
193  NODE_TYPE getNodeType() const { return GEOM_BOX; }
194 
195  Scalar computeVolume() const { return 8 * halfSide.prod(); }
196 
198  Scalar V = computeVolume();
199  Vec3s s(halfSide.cwiseAbs2() * V);
200  return (Vec3s(s[1] + s[2], s[0] + s[2], s[0] + s[1]) / 3).asDiagonal();
201  }
202 
203  Scalar minInflationValue() const { return -halfSide.minCoeff(); }
204 
213  std::pair<Box, Transform3s> inflated(const Scalar value) const {
214  if (value <= minInflationValue())
215  COAL_THROW_PRETTY("value (" << value << ") "
216  << "is two small. It should be at least: "
217  << minInflationValue(),
218  std::invalid_argument);
219  return std::make_pair(Box(2 * (halfSide + Vec3s::Constant(value))),
220  Transform3s());
221  }
222 
223  private:
224  virtual bool isEqual(const CollisionGeometry& _other) const {
225  const Box* other_ptr = dynamic_cast<const Box*>(&_other);
226  if (other_ptr == nullptr) return false;
227  const Box& other = *other_ptr;
228 
229  return halfSide == other.halfSide &&
230  getSweptSphereRadius() == other.getSweptSphereRadius();
231  }
232 
233  public:
234  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
235 };
236 
238 class COAL_DLLAPI Sphere : public ShapeBase {
239  public:
241  Sphere() {}
242 
243  explicit Sphere(Scalar radius_) : ShapeBase(), radius(radius_) {}
244 
245  Sphere(const Sphere& other) : ShapeBase(other), radius(other.radius) {}
246 
248  virtual Sphere* clone() const { return new Sphere(*this); };
249 
252 
255 
257  NODE_TYPE getNodeType() const { return GEOM_SPHERE; }
258 
260  Scalar I = Scalar(0.4) * radius * radius * computeVolume();
261  return I * Matrix3s::Identity();
262  }
263 
265  return 4 * boost::math::constants::pi<Scalar>() * radius * radius * radius /
266  3;
267  }
268 
269  Scalar minInflationValue() const { return -radius; }
270 
279  std::pair<Sphere, Transform3s> inflated(const Scalar value) const {
280  if (value <= minInflationValue())
281  COAL_THROW_PRETTY("value (" << value
282  << ") is two small. It should be at least: "
283  << minInflationValue(),
284  std::invalid_argument);
285  return std::make_pair(Sphere(radius + value), Transform3s());
286  }
287 
288  private:
289  virtual bool isEqual(const CollisionGeometry& _other) const {
290  const Sphere* other_ptr = dynamic_cast<const Sphere*>(&_other);
291  if (other_ptr == nullptr) return false;
292  const Sphere& other = *other_ptr;
293 
294  return radius == other.radius &&
295  getSweptSphereRadius() == other.getSweptSphereRadius();
296  }
297 
298  public:
299  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
300 };
301 
304  public:
307 
308  Ellipsoid(Scalar rx, Scalar ry, Scalar rz) : ShapeBase(), radii(rx, ry, rz) {}
309 
310  explicit Ellipsoid(const Vec3s& radii) : radii(radii) {}
311 
312  Ellipsoid(const Ellipsoid& other) : ShapeBase(other), radii(other.radii) {}
313 
315  virtual Ellipsoid* clone() const { return new Ellipsoid(*this); };
316 
320 
323 
326 
328  Scalar V = computeVolume();
329  Scalar a2 = V * radii[0] * radii[0];
330  Scalar b2 = V * radii[1] * radii[1];
331  Scalar c2 = V * radii[2] * radii[2];
332  Scalar alpha = Scalar(0.2);
333  return (Matrix3s() << alpha * (b2 + c2), 0, 0, 0, alpha * (a2 + c2), 0, 0,
334  0, alpha * (a2 + b2))
335  .finished();
336  }
337 
339  return 4 * boost::math::constants::pi<Scalar>() * radii[0] * radii[1] *
340  radii[2] / 3;
341  }
342 
343  Scalar minInflationValue() const { return -radii.minCoeff(); }
344 
353  std::pair<Ellipsoid, Transform3s> inflated(const Scalar value) const {
354  if (value <= minInflationValue())
355  COAL_THROW_PRETTY("value (" << value
356  << ") is two small. It should be at least: "
357  << minInflationValue(),
358  std::invalid_argument);
359  return std::make_pair(Ellipsoid(radii + Vec3s::Constant(value)),
360  Transform3s());
361  }
362 
363  private:
364  virtual bool isEqual(const CollisionGeometry& _other) const {
365  const Ellipsoid* other_ptr = dynamic_cast<const Ellipsoid*>(&_other);
366  if (other_ptr == nullptr) return false;
367  const Ellipsoid& other = *other_ptr;
368 
369  return radii == other.radii &&
370  getSweptSphereRadius() == other.getSweptSphereRadius();
371  }
372 
373  public:
374  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
375 };
376 
381 class COAL_DLLAPI Capsule : public ShapeBase {
382  public:
384  Capsule() {}
385 
386  Capsule(Scalar radius_, Scalar lz_) : ShapeBase(), radius(radius_) {
387  halfLength = lz_ / 2;
388  }
389 
390  Capsule(const Capsule& other)
391  : ShapeBase(other), radius(other.radius), halfLength(other.halfLength) {}
392 
394  virtual Capsule* clone() const { return new Capsule(*this); };
395 
398 
401 
404 
406  NODE_TYPE getNodeType() const { return GEOM_CAPSULE; }
407 
409  return boost::math::constants::pi<Scalar>() * radius * radius *
410  ((halfLength * 2) + radius * 4 / Scalar(3));
411  }
412 
414  Scalar v_cyl = radius * radius * (halfLength * 2) *
415  boost::math::constants::pi<Scalar>();
416  Scalar v_sph = radius * radius * radius *
417  boost::math::constants::pi<Scalar>() * 4 / Scalar(3);
418 
419  Scalar h2 = halfLength * halfLength;
420  Scalar r2 = radius * radius;
421  Scalar ix =
422  v_cyl * (h2 / Scalar(3) + r2 / Scalar(4)) +
423  v_sph * (Scalar(0.4) * r2 + h2 + Scalar(0.75) * radius * halfLength);
424  Scalar iz = (Scalar(0.5) * v_cyl + Scalar(0.4) * v_sph) * radius * radius;
425 
426  return (Matrix3s() << ix, 0, 0, 0, ix, 0, 0, 0, iz).finished();
427  }
428 
429  Scalar minInflationValue() const { return -radius; }
430 
439  std::pair<Capsule, Transform3s> inflated(const Scalar value) const {
440  if (value <= minInflationValue())
441  COAL_THROW_PRETTY("value (" << value
442  << ") is two small. It should be at least: "
443  << minInflationValue(),
444  std::invalid_argument);
445  return std::make_pair(Capsule(radius + value, 2 * halfLength),
446  Transform3s());
447  }
448 
449  private:
450  virtual bool isEqual(const CollisionGeometry& _other) const {
451  const Capsule* other_ptr = dynamic_cast<const Capsule*>(&_other);
452  if (other_ptr == nullptr) return false;
453  const Capsule& other = *other_ptr;
454 
455  return radius == other.radius && halfLength == other.halfLength &&
456  getSweptSphereRadius() == other.getSweptSphereRadius();
457  }
458 
459  public:
460  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
461 };
462 
466 class COAL_DLLAPI Cone : public ShapeBase {
467  public:
469  Cone() {}
470 
471  Cone(Scalar radius_, Scalar lz_) : ShapeBase(), radius(radius_) {
472  halfLength = lz_ / 2;
473  }
474 
475  Cone(const Cone& other)
476  : ShapeBase(other), radius(other.radius), halfLength(other.halfLength) {}
477 
479  virtual Cone* clone() const { return new Cone(*this); };
480 
483 
486 
489 
491  NODE_TYPE getNodeType() const { return GEOM_CONE; }
492 
494  return boost::math::constants::pi<Scalar>() * radius * radius *
495  (halfLength * 2) / 3;
496  }
497 
499  Scalar V = computeVolume();
500  Scalar ix =
501  V * (Scalar(0.4) * halfLength * halfLength + 3 * radius * radius / 20);
502  Scalar iz = Scalar(0.3) * V * radius * radius;
503 
504  return (Matrix3s() << ix, 0, 0, 0, ix, 0, 0, 0, iz).finished();
505  }
506 
507  Vec3s computeCOM() const { return Vec3s(0, 0, -Scalar(0.5) * halfLength); }
508 
509  Scalar minInflationValue() const { return -(std::min)(radius, halfLength); }
510 
519  std::pair<Cone, Transform3s> inflated(const Scalar value) const {
520  if (value <= minInflationValue())
521  COAL_THROW_PRETTY("value (" << value
522  << ") is two small. It should be at least: "
523  << minInflationValue(),
524  std::invalid_argument);
525 
526  // tan(alpha) = 2*halfLength/radius;
527  const Scalar tan_alpha = 2 * halfLength / radius;
528  const Scalar sin_alpha = tan_alpha / std::sqrt(1 + tan_alpha * tan_alpha);
529  const Scalar top_inflation = value / sin_alpha;
530  const Scalar bottom_inflation = value;
531 
532  const Scalar new_lz = 2 * halfLength + top_inflation + bottom_inflation;
533  const Scalar new_cz = (top_inflation + bottom_inflation) / Scalar(2);
534  const Scalar new_radius = new_lz / tan_alpha;
535 
536  return std::make_pair(Cone(new_radius, new_lz),
537  Transform3s(Vec3s(0., 0., new_cz)));
538  }
539 
540  private:
541  virtual bool isEqual(const CollisionGeometry& _other) const {
542  const Cone* other_ptr = dynamic_cast<const Cone*>(&_other);
543  if (other_ptr == nullptr) return false;
544  const Cone& other = *other_ptr;
545 
546  return radius == other.radius && halfLength == other.halfLength &&
547  getSweptSphereRadius() == other.getSweptSphereRadius();
548  }
549 
550  public:
551  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
552 };
553 
557  public:
559  Cylinder() {}
560 
561  Cylinder(Scalar radius_, Scalar lz_) : ShapeBase(), radius(radius_) {
562  halfLength = lz_ / 2;
563  }
564 
565  Cylinder(const Cylinder& other)
566  : ShapeBase(other), radius(other.radius), halfLength(other.halfLength) {}
567 
568  Cylinder& operator=(const Cylinder& other) {
569  if (this == &other) return *this;
570 
571  this->radius = other.radius;
572  this->halfLength = other.halfLength;
573  return *this;
574  }
575 
577  virtual Cylinder* clone() const { return new Cylinder(*this); };
578 
581 
584 
587 
589  NODE_TYPE getNodeType() const { return GEOM_CYLINDER; }
590 
592  return boost::math::constants::pi<Scalar>() * radius * radius *
593  (halfLength * 2);
594  }
595 
597  Scalar V = computeVolume();
598  Scalar ix = V * (radius * radius / 4 + halfLength * halfLength / 3);
599  Scalar iz = V * radius * radius / 2;
600  return (Matrix3s() << ix, 0, 0, 0, ix, 0, 0, 0, iz).finished();
601  }
602 
603  Scalar minInflationValue() const { return -(std::min)(radius, halfLength); }
604 
613  std::pair<Cylinder, Transform3s> inflated(const Scalar value) const {
614  if (value <= minInflationValue())
615  COAL_THROW_PRETTY("value (" << value
616  << ") is two small. It should be at least: "
617  << minInflationValue(),
618  std::invalid_argument);
619  return std::make_pair(Cylinder(radius + value, 2 * (halfLength + value)),
620  Transform3s());
621  }
622 
623  private:
624  virtual bool isEqual(const CollisionGeometry& _other) const {
625  const Cylinder* other_ptr = dynamic_cast<const Cylinder*>(&_other);
626  if (other_ptr == nullptr) return false;
627  const Cylinder& other = *other_ptr;
628 
629  return radius == other.radius && halfLength == other.halfLength &&
630  getSweptSphereRadius() == other.getSweptSphereRadius();
631  }
632 
633  public:
634  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
635 };
636 
637 template <typename _IndexType>
639  typedef _IndexType IndexType;
640 
641  unsigned char count;
643 
644  bool operator==(const ConvexBaseTplNeighbors& other) const {
645  if (count != other.count) return false;
646  if (begin_id != other.begin_id) return false;
647 
648  return true;
649  }
650 
651  bool operator!=(const ConvexBaseTplNeighbors& other) const {
652  return !(*this == other);
653  }
654 };
655 
656 // The support warm start polytope contains certain points of `this`
657 // which are support points in specific directions of space.
658 // This struct is used to warm start the support function computation for
659 // large meshes (`num_points` > 32).
660 template <typename _IndexType>
662  typedef _IndexType IndexType;
663 
664  // Array of support points to warm start the support function
665  // computation.
666  std::vector<Vec3s> points;
667 
668  // Indices of the support points warm starts.
669  // These are the indices of the real convex, not the indices of points in
670  // the warm start polytope.
671  std::vector<IndexType> indices;
672 
673  // Cast to a different index type.
674  template <typename OtherIndexType>
677  ResType res;
678  res.points = this->points;
679  res.indices.clear();
680  for (size_t i = 0; i < this->indices.size(); ++i) {
681  res.indices.push_back(OtherIndexType(this->indices[i]));
682  }
683  return res;
684  }
685 };
686 
690 template <typename _IndexType>
691 class ConvexBaseTpl : public ShapeBase {
692  public:
693  // clang-format off
695  // clang-format on
696  typedef _IndexType IndexType;
697  typedef ShapeBase Base;
698 
699  template <typename OtherIndexType>
700  friend class ConvexBaseTpl;
701 
715  std::shared_ptr<std::vector<Vec3s>>& points, unsigned int num_points,
716  bool keepTriangles, const char* qhullCommand = NULL);
717 
718  // TODO(louis): put this method in private sometime in the future.
720  const Vec3s* points, unsigned int num_points, bool keepTriangles,
721  const char* qhullCommand = NULL);
722 
723  virtual ~ConvexBaseTpl() {}
724 
727  Base& base() { return static_cast<Base&>(*this); }
728 
731  const Base& base() const { return static_cast<const Base&>(*this); }
732 
736  ConvexBaseTpl(const ConvexBaseTpl& other) { *this = other; }
737 
741  ConvexBaseTpl& operator=(const ConvexBaseTpl& other);
742 
744  COAL_DEPRECATED_MESSAGE(Use deepcopy instead.)
745  virtual ConvexBaseTpl* clone() const { return this->deepcopy(); }
746 
749  virtual ConvexBaseTpl* deepcopy() const {
750  ConvexBaseTpl* copy = new ConvexBaseTpl();
751  deepcopy(this, copy);
752  return copy;
753  }
754 
757  template <typename OtherIndexType>
760  deepcopy(this, &res);
761  return res;
762  }
763 
765  void computeLocalAABB();
766 
768  NODE_TYPE getNodeType() const;
769 
770 #ifdef COAL_HAS_QHULL
773  void COAL_DLLAPI buildDoubleDescription();
774 #endif
775 
777 
780  assert(i < IndexType(num_points));
781  const std::vector<Neighbors>& nns = *neighbors;
782  IndexType begin_id = nns[i].begin_id;
783 #ifndef NDEBUG
784  unsigned char count = nns[i].count;
785  assert(j < count);
786 #endif
787  const std::vector<IndexType>& nns_vec = *nneighbors_;
788  return nns_vec[begin_id + j];
789  }
790 
793  static constexpr size_t num_vertices_large_convex_threshold = 32;
794 
796  std::shared_ptr<std::vector<Vec3s>> points;
797  unsigned int num_points;
798 
800  std::shared_ptr<std::vector<Vec3s>> normals;
803  std::shared_ptr<std::vector<Scalar>> offsets;
805 
809  std::shared_ptr<std::vector<Neighbors>> neighbors;
810 
814 
817 
819  static constexpr size_t num_support_warm_starts = 14;
820 
823 
824  protected:
828  : ShapeBase(),
829  num_points(0),
831  center(Vec3s::Zero()) {}
832 
838  void initialize(std::shared_ptr<std::vector<Vec3s>> points_,
839  unsigned int num_points_);
840 
845  void set(std::shared_ptr<std::vector<Vec3s>> points_,
846  unsigned int num_points_);
847 
848 #ifdef COAL_HAS_QHULL
849  void COAL_DLLAPI
850  buildDoubleDescriptionFromQHullResult(const orgQhull::Qhull& qh);
851 #endif
852 
855 
861  std::shared_ptr<std::vector<IndexType>> nneighbors_;
862 
863  protected:
866  template <typename OtherIndexType>
867  static void deepcopy(const ConvexBaseTpl<IndexType>* source,
869 
870  void computeCenter();
871 
872  virtual bool isEqual(const CollisionGeometry& _other) const {
873  const ConvexBaseTpl* other_ptr =
874  dynamic_cast<const ConvexBaseTpl*>(&_other);
875  if (other_ptr == nullptr) return false;
876  const ConvexBaseTpl& other = *other_ptr;
877 
878  if (num_points != other.num_points) return false;
879 
880  if ((!(points.get()) && other.points.get()) ||
881  (points.get() && !(other.points.get())))
882  return false;
883  if (points.get() && other.points.get()) {
884  const std::vector<Vec3s>& points_ = *points;
885  const std::vector<Vec3s>& other_points_ = *(other.points);
886  for (unsigned int i = 0; i < num_points; ++i) {
887  if (points_[i] != (other_points_)[i]) return false;
888  }
889  }
890 
891  if ((!(neighbors.get()) && other.neighbors.get()) ||
892  (neighbors.get() && !(other.neighbors.get())))
893  return false;
894  if (neighbors.get() && other.neighbors.get()) {
895  const std::vector<Neighbors>& neighbors_ = *neighbors;
896  const std::vector<Neighbors>& other_neighbors_ = *(other.neighbors);
897  for (unsigned int i = 0; i < num_points; ++i) {
898  if (neighbors_[i] != other_neighbors_[i]) return false;
899  }
900  }
901 
902  if ((!(normals.get()) && other.normals.get()) ||
903  (normals.get() && !(other.normals.get())))
904  return false;
905  if (normals.get() && other.normals.get()) {
906  const std::vector<Vec3s>& normals_ = *normals;
907  const std::vector<Vec3s>& other_normals_ = *(other.normals);
908  for (unsigned int i = 0; i < num_normals_and_offsets; ++i) {
909  if (normals_[i] != other_normals_[i]) return false;
910  }
911  }
912 
913  if ((!(offsets.get()) && other.offsets.get()) ||
914  (offsets.get() && !(other.offsets.get())))
915  return false;
916  if (offsets.get() && other.offsets.get()) {
917  const std::vector<Scalar>& offsets_ = *offsets;
918  const std::vector<Scalar>& other_offsets_ = *(other.offsets);
919  for (unsigned int i = 0; i < num_normals_and_offsets; ++i) {
920  if (offsets_[i] != other_offsets_[i]) return false;
921  }
922  }
923 
924  if (this->support_warm_starts.points.size() !=
925  other.support_warm_starts.points.size() ||
926  this->support_warm_starts.indices.size() !=
927  other.support_warm_starts.indices.size()) {
928  return false;
929  }
930 
931  for (size_t i = 0; i < this->support_warm_starts.points.size(); ++i) {
932  if (this->support_warm_starts.points[i] !=
933  other.support_warm_starts.points[i] ||
934  this->support_warm_starts.indices[i] !=
935  other.support_warm_starts.indices[i]) {
936  return false;
937  }
938  }
939 
940  return center == other.center &&
942  }
943 
944  public:
945  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
946 };
947 
950 // typedef ConvexBase32 ConvexBase;
951 
952 template <typename PolygonT>
953 class ConvexTpl;
954 
964  public:
966  Halfspace(const Vec3s& n_, Scalar d_) : ShapeBase(), n(n_), d(d_) {
967  unitNormalTest();
968  }
969 
972  : ShapeBase(), n(a, b, c), d(d_) {
973  unitNormalTest();
974  }
975 
976  Halfspace() : ShapeBase(), n(1, 0, 0), d(0) {}
977 
978  Halfspace(const Halfspace& other)
979  : ShapeBase(other), n(other.n), d(other.d) {}
980 
982  Halfspace& operator=(const Halfspace& other) {
983  n = other.n;
984  d = other.d;
985  return *this;
986  }
987 
989  virtual Halfspace* clone() const { return new Halfspace(*this); };
990 
991  Scalar signedDistance(const Vec3s& p) const {
992  return n.dot(p) - (d + this->getSweptSphereRadius());
993  }
994 
995  Scalar distance(const Vec3s& p) const {
996  return std::abs(this->signedDistance(p));
997  }
998 
1001 
1004 
1006  return std::numeric_limits<Scalar>::lowest();
1007  }
1008 
1017  std::pair<Halfspace, Transform3s> inflated(const Scalar value) const {
1018  if (value <= minInflationValue())
1019  COAL_THROW_PRETTY("value (" << value
1020  << ") is two small. It should be at least: "
1021  << minInflationValue(),
1022  std::invalid_argument);
1023  return std::make_pair(Halfspace(n, d + value), Transform3s());
1024  }
1025 
1028 
1031 
1032  protected:
1035 
1036  private:
1037  virtual bool isEqual(const CollisionGeometry& _other) const {
1038  const Halfspace* other_ptr = dynamic_cast<const Halfspace*>(&_other);
1039  if (other_ptr == nullptr) return false;
1040  const Halfspace& other = *other_ptr;
1041 
1042  return n == other.n && d == other.d &&
1043  getSweptSphereRadius() == other.getSweptSphereRadius();
1044  }
1045 
1046  public:
1047  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
1048 };
1049 
1054 class COAL_DLLAPI Plane : public ShapeBase {
1055  public:
1057  Plane(const Vec3s& n_, Scalar d_) : ShapeBase(), n(n_), d(d_) {
1058  unitNormalTest();
1059  }
1060 
1063  : ShapeBase(), n(a, b, c), d(d_) {
1064  unitNormalTest();
1065  }
1066 
1067  Plane() : ShapeBase(), n(1, 0, 0), d(0) {}
1068 
1069  Plane(const Plane& other) : ShapeBase(other), n(other.n), d(other.d) {}
1070 
1072  Plane& operator=(const Plane& other) {
1073  n = other.n;
1074  d = other.d;
1075  return *this;
1076  }
1077 
1079  virtual Plane* clone() const { return new Plane(*this); };
1080 
1081  Scalar signedDistance(const Vec3s& p) const {
1082  const Scalar dist = n.dot(p) - d;
1083  Scalar signed_dist = std::abs(n.dot(p) - d) - this->getSweptSphereRadius();
1084  if (dist >= 0) {
1085  return signed_dist;
1086  }
1087  if (signed_dist >= 0) {
1088  return -signed_dist;
1089  }
1090  return signed_dist;
1091  }
1092 
1093  Scalar distance(const Vec3s& p) const {
1094  return std::abs(std::abs(n.dot(p) - d) - this->getSweptSphereRadius());
1095  }
1096 
1099 
1101  NODE_TYPE getNodeType() const { return GEOM_PLANE; }
1102 
1105 
1108 
1109  protected:
1112 
1113  private:
1114  virtual bool isEqual(const CollisionGeometry& _other) const {
1115  const Plane* other_ptr = dynamic_cast<const Plane*>(&_other);
1116  if (other_ptr == nullptr) return false;
1117  const Plane& other = *other_ptr;
1118 
1119  return n == other.n && d == other.d &&
1120  getSweptSphereRadius() == other.getSweptSphereRadius();
1121  }
1122 
1123  public:
1124  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
1125 };
1126  // end of Geometric_Shapes
1128 
1129 } // namespace coal
1130 
1132 
1133 #endif
Center at zero point, axis aligned box.
Definition: geometric_shapes.h:164
Box & operator=(const Box &other)
Definition: geometric_shapes.h:173
virtual Box * clone() const
Clone *this into a new Box.
Definition: geometric_shapes.h:181
Box()
Default constructor.
Definition: geometric_shapes.h:184
std::pair< Box, Transform3s > inflated(const Scalar value) const
Inflate the box by an amount given by value. This value can be positive or negative but must always >...
Definition: geometric_shapes.h:213
void computeLocalAABB()
Compute AABB.
Box(Scalar x, Scalar y, Scalar z)
Definition: geometric_shapes.h:166
Vec3s halfSide
box side half-length
Definition: geometric_shapes.h:187
Scalar minInflationValue() const
Definition: geometric_shapes.h:203
Scalar computeVolume() const
compute the volume
Definition: geometric_shapes.h:195
Matrix3s computeMomentofInertia() const
compute the inertia matrix, related to the origin
Definition: geometric_shapes.h:197
Box(const Vec3s &side_)
Definition: geometric_shapes.h:169
Box(const Box &other)
Definition: geometric_shapes.h:171
NODE_TYPE getNodeType() const
Get node type: a box.
Definition: geometric_shapes.h:193
Capsule It is where is the distance between the point x and the capsule segment AB,...
Definition: geometric_shapes.h:381
Scalar minInflationValue() const
Definition: geometric_shapes.h:429
Matrix3s computeMomentofInertia() const
compute the inertia matrix, related to the origin
Definition: geometric_shapes.h:413
virtual Capsule * clone() const
Clone *this into a new Capsule.
Definition: geometric_shapes.h:394
Scalar halfLength
Half Length along z axis.
Definition: geometric_shapes.h:400
Capsule(Scalar radius_, Scalar lz_)
Definition: geometric_shapes.h:386
Capsule(const Capsule &other)
Definition: geometric_shapes.h:390
void computeLocalAABB()
Compute AABB.
std::pair< Capsule, Transform3s > inflated(const Scalar value) const
Inflate the capsule by an amount given by value. This value can be positive or negative but must alwa...
Definition: geometric_shapes.h:439
Scalar computeVolume() const
compute the volume
Definition: geometric_shapes.h:408
Capsule()
Default constructor.
Definition: geometric_shapes.h:384
Scalar radius
Radius of capsule.
Definition: geometric_shapes.h:394
NODE_TYPE getNodeType() const
Get node type: a capsule.
Definition: geometric_shapes.h:406
The geometry for the object for collision or distance computation.
Definition: collision_object.h:96
Cone The base of the cone is at and the top is at .
Definition: geometric_shapes.h:466
std::pair< Cone, Transform3s > inflated(const Scalar value) const
Inflate the cone by an amount given by value. This value can be positive or negative but must always ...
Definition: geometric_shapes.h:519
Scalar halfLength
Half Length along z axis.
Definition: geometric_shapes.h:485
Cone(Scalar radius_, Scalar lz_)
Definition: geometric_shapes.h:471
NODE_TYPE getNodeType() const
Get node type: a cone.
Definition: geometric_shapes.h:491
Scalar minInflationValue() const
Definition: geometric_shapes.h:509
void computeLocalAABB()
Compute AABB.
Scalar radius
Radius of the cone.
Definition: geometric_shapes.h:479
Vec3s computeCOM() const
compute center of mass
Definition: geometric_shapes.h:507
Scalar computeVolume() const
compute the volume
Definition: geometric_shapes.h:493
virtual Cone * clone() const
Clone *this into a new Cone.
Definition: geometric_shapes.h:479
Matrix3s computeMomentofInertia() const
compute the inertia matrix, related to the origin
Definition: geometric_shapes.h:498
Cone()
Default constructor.
Definition: geometric_shapes.h:469
Cone(const Cone &other)
Definition: geometric_shapes.h:475
Base for convex polytope.
Definition: geometric_shapes.h:691
unsigned int num_points
Definition: geometric_shapes.h:797
virtual ConvexBaseTpl * deepcopy() const
Deep copy of the ConvexBaseTpl. This method deep copies every field of the class.
Definition: geometric_shapes.h:749
ShapeBase Base
Definition: geometric_shapes.h:697
std::shared_ptr< std::vector< Vec3s > > normals
An array of the normals of the polygon.
Definition: geometric_shapes.h:800
SupportWarmStartPolytope support_warm_starts
Support warm start polytopes.
Definition: geometric_shapes.h:822
std::shared_ptr< std::vector< Vec3s > > points
An array of the points of the polygon.
Definition: geometric_shapes.h:796
_IndexType IndexType
Definition: geometric_shapes.h:696
const Base & base() const
Const cast ConvexBaseTpl to ShapeBase. This method should never be marked as virtual.
Definition: geometric_shapes.h:731
static ConvexBaseTpl * convexHull(std::shared_ptr< std::vector< Vec3s >> &points, unsigned int num_points, bool keepTriangles, const char *qhullCommand=NULL)
Build a convex hull based on Qhull library and store the vertices and optionally the triangles.
Vec3s center
center of the convex polytope, this is used for collision: center is guaranteed in the internal of th...
Definition: geometric_shapes.h:813
virtual ~ConvexBaseTpl()
Definition: geometric_shapes.h:723
static constexpr size_t num_vertices_large_convex_threshold
Above this threshold, the convex polytope is considered large. This influcences the way the support f...
Definition: geometric_shapes.h:793
void buildSupportWarmStart()
Build the support points warm starts.
void computeCenter()
Definition: geometric_shapes.hxx:184
_IndexType index_type
Definition: geometric_shapes.h:694
ConvexBaseTpl & operator=(const ConvexBaseTpl &other)
Copy assignment operator. The copy assignment operator shallow copies the data, just as the copy cons...
Definition: geometric_shapes.hxx:88
static constexpr size_t num_support_warm_starts
Number of support warm starts.
Definition: geometric_shapes.h:819
void computeLocalAABB()
Compute AABB.
Definition: geometric_shapes.hxx:197
std::shared_ptr< std::vector< Neighbors > > neighbors
Neighbors of each vertex. It is an array of size num_points. For each vertex, it contains the number ...
Definition: geometric_shapes.h:809
static ConvexBaseTpl * convexHull(const Vec3s *points, unsigned int num_points, bool keepTriangles, const char *qhullCommand=NULL)
NODE_TYPE getNodeType() const
Get node type: a convex polytope.
Definition: geometric_shapes.hxx:50
void set(std::shared_ptr< std::vector< Vec3s >> points_, unsigned int num_points_)
Set the points of the convex shape.
Definition: geometric_shapes.hxx:82
friend class ConvexBaseTpl
Definition: geometric_shapes.h:700
std::shared_ptr< std::vector< Scalar > > offsets
An array of the offsets to the normals of the polygon. Note: there are as many offsets as normals.
Definition: geometric_shapes.h:803
virtual bool isEqual(const CollisionGeometry &_other) const
equal operator with another object of derived type.
Definition: geometric_shapes.h:872
ConvexBaseTpl< OtherIndexType > cast() const
Cast this ConvexBase vertex indices to OtherIndexType. This effectively deep copies this ConvexBaseTp...
Definition: geometric_shapes.h:758
ConvexBaseTpl()
Construct an uninitialized convex object Initialization is done with ConvexBase::initialize.
Definition: geometric_shapes.h:827
Base & base()
Cast ConvexBaseTpl to ShapeBase. This method should never be marked as virtual.
Definition: geometric_shapes.h:727
IndexType neighbor(IndexType i, IndexType j) const
Get the index of the j-th neighbor of the i-th vertex.
Definition: geometric_shapes.h:779
void initialize(std::shared_ptr< std::vector< Vec3s >> points_, unsigned int num_points_)
Initialize the points of the convex shape This also initializes the ConvexBase::center.
Definition: geometric_shapes.hxx:67
virtual ConvexBaseTpl * clone() const
Clone (deep copy).
Definition: geometric_shapes.h:745
ConvexBaseTpl(const ConvexBaseTpl &other)
Copy constructor. The copy constructor only shallow copies the data (it copies the shared pointers bu...
Definition: geometric_shapes.h:736
unsigned int num_normals_and_offsets
Definition: geometric_shapes.h:804
std::shared_ptr< std::vector< IndexType > > nneighbors_
Array of indices of the neighbors of each vertex. Since we don't know a priori the number of neighbor...
Definition: geometric_shapes.h:861
Convex polytope.
Definition: convex.h:50
Cylinder along Z axis. The cylinder is defined at its centroid.
Definition: geometric_shapes.h:556
Matrix3s computeMomentofInertia() const
compute the inertia matrix, related to the origin
Definition: geometric_shapes.h:596
Scalar radius
Radius of the cylinder.
Definition: geometric_shapes.h:577
Scalar computeVolume() const
compute the volume
Definition: geometric_shapes.h:591
Cylinder(Scalar radius_, Scalar lz_)
Definition: geometric_shapes.h:561
Cylinder()
Default constructor.
Definition: geometric_shapes.h:559
Scalar minInflationValue() const
Definition: geometric_shapes.h:603
void computeLocalAABB()
Compute AABB.
Scalar halfLength
Half Length along z axis.
Definition: geometric_shapes.h:583
Cylinder(const Cylinder &other)
Definition: geometric_shapes.h:565
std::pair< Cylinder, Transform3s > inflated(const Scalar value) const
Inflate the cylinder by an amount given by value. This value can be positive or negative but must alw...
Definition: geometric_shapes.h:613
NODE_TYPE getNodeType() const
Get node type: a cylinder.
Definition: geometric_shapes.h:589
virtual Cylinder * clone() const
Clone *this into a new Cylinder.
Definition: geometric_shapes.h:577
Cylinder & operator=(const Cylinder &other)
Definition: geometric_shapes.h:568
Ellipsoid centered at point zero.
Definition: geometric_shapes.h:303
Ellipsoid(const Ellipsoid &other)
Definition: geometric_shapes.h:312
Ellipsoid()
Default constructor.
Definition: geometric_shapes.h:306
void computeLocalAABB()
Compute AABB.
Matrix3s computeMomentofInertia() const
compute the inertia matrix, related to the origin
Definition: geometric_shapes.h:327
NODE_TYPE getNodeType() const
Get node type: an ellipsoid.
Definition: geometric_shapes.h:325
Ellipsoid(const Vec3s &radii)
Definition: geometric_shapes.h:310
Scalar computeVolume() const
compute the volume
Definition: geometric_shapes.h:338
virtual Ellipsoid * clone() const
Clone *this into a new Ellipsoid.
Definition: geometric_shapes.h:315
std::pair< Ellipsoid, Transform3s > inflated(const Scalar value) const
Inflate the ellipsoid by an amount given by value. This value can be positive or negative but must al...
Definition: geometric_shapes.h:353
Vec3s radii
Radii of the Ellipsoid (such that on boundary: x^2/rx^2 + y^2/ry^2.
Definition: geometric_shapes.h:315
Scalar minInflationValue() const
Definition: geometric_shapes.h:343
Ellipsoid(Scalar rx, Scalar ry, Scalar rz)
Definition: geometric_shapes.h:308
Half Space: this is equivalent to the Plane in ODE. A Half space has a priviledged direction: the dir...
Definition: geometric_shapes.h:963
Scalar minInflationValue() const
Definition: geometric_shapes.h:1005
Vec3s n
Plane normal.
Definition: geometric_shapes.h:1027
Halfspace & operator=(const Halfspace &other)
operator =
Definition: geometric_shapes.h:982
Scalar d
Plane offset.
Definition: geometric_shapes.h:1030
Scalar distance(const Vec3s &p) const
Definition: geometric_shapes.h:995
std::pair< Halfspace, Transform3s > inflated(const Scalar value) const
Inflate the halfspace by an amount given by value. This value can be positive or negative but must al...
Definition: geometric_shapes.h:1017
Halfspace(const Halfspace &other)
Definition: geometric_shapes.h:978
Halfspace(Scalar a, Scalar b, Scalar c, Scalar d_)
Construct a plane with normal direction and offset.
Definition: geometric_shapes.h:971
Halfspace()
Definition: geometric_shapes.h:976
Halfspace(const Vec3s &n_, Scalar d_)
Construct a half space with normal direction and offset.
Definition: geometric_shapes.h:966
Scalar signedDistance(const Vec3s &p) const
Definition: geometric_shapes.h:991
void unitNormalTest()
Turn non-unit normal into unit.
NODE_TYPE getNodeType() const
Get node type: a half space.
Definition: geometric_shapes.h:1003
virtual Halfspace * clone() const
Clone *this into a new Halfspace.
Definition: geometric_shapes.h:989
void computeLocalAABB()
Compute AABB.
Infinite plane. A plane can be viewed as two half spaces; it has no priviledged direction....
Definition: geometric_shapes.h:1054
Scalar distance(const Vec3s &p) const
Definition: geometric_shapes.h:1093
Plane()
Definition: geometric_shapes.h:1067
Vec3s n
Plane normal.
Definition: geometric_shapes.h:1104
virtual Plane * clone() const
Clone *this into a new Plane.
Definition: geometric_shapes.h:1079
Plane(const Vec3s &n_, Scalar d_)
Construct a plane with normal direction and offset.
Definition: geometric_shapes.h:1057
Plane(const Plane &other)
Definition: geometric_shapes.h:1069
void unitNormalTest()
Turn non-unit normal into unit.
void computeLocalAABB()
Compute AABB.
Plane & operator=(const Plane &other)
operator =
Definition: geometric_shapes.h:1072
Scalar signedDistance(const Vec3s &p) const
Definition: geometric_shapes.h:1081
NODE_TYPE getNodeType() const
Get node type: a plane.
Definition: geometric_shapes.h:1101
Scalar d
Plane offset.
Definition: geometric_shapes.h:1107
Plane(Scalar a, Scalar b, Scalar c, Scalar d_)
Construct a plane with normal direction and offset.
Definition: geometric_shapes.h:1062
Base class for all basic geometric shapes.
Definition: geometric_shapes.h:58
ShapeBase & operator=(const ShapeBase &other)=default
virtual ~ShapeBase()
Definition: geometric_shapes.h:69
ShapeBase(const ShapeBase &other)
&#160;
Definition: geometric_shapes.h:63
void setSweptSphereRadius(Scalar radius)
Set radius of sphere swept around the shape. Must be >= 0.
Definition: geometric_shapes.h:76
OBJECT_TYPE getObjectType() const
Get object type: a geometric shape.
Definition: geometric_shapes.h:72
Scalar getSweptSphereRadius() const
Get radius of sphere swept around the shape. This radius is always >= 0.
Definition: geometric_shapes.h:86
ShapeBase()
Definition: geometric_shapes.h:60
Center at zero point sphere.
Definition: geometric_shapes.h:238
Scalar minInflationValue() const
Definition: geometric_shapes.h:269
Matrix3s computeMomentofInertia() const
compute the inertia matrix, related to the origin
Definition: geometric_shapes.h:259
Sphere(const Sphere &other)
Definition: geometric_shapes.h:245
std::pair< Sphere, Transform3s > inflated(const Scalar value) const
Inflate the sphere by an amount given by value. This value can be positive or negative but must alway...
Definition: geometric_shapes.h:279
void computeLocalAABB()
Compute AABB.
Sphere()
Default constructor.
Definition: geometric_shapes.h:241
Scalar radius
Radius of the sphere.
Definition: geometric_shapes.h:248
NODE_TYPE getNodeType() const
Get node type: a sphere.
Definition: geometric_shapes.h:257
virtual Sphere * clone() const
Clone *this into a new Sphere.
Definition: geometric_shapes.h:248
Sphere(Scalar radius_)
Definition: geometric_shapes.h:243
Scalar computeVolume() const
compute the volume
Definition: geometric_shapes.h:264
Simple transform class used locally by InterpMotion.
Definition: transform.h:55
Triangle stores the points instead of only indices of points.
Definition: geometric_shapes.h:108
virtual TriangleP * clone() const
Clone *this into a new TriangleP.
Definition: geometric_shapes.h:119
NODE_TYPE getNodeType() const
get the node type
Definition: geometric_shapes.h:124
TriangleP(const TriangleP &other)
Definition: geometric_shapes.h:115
Vec3s a
Definition: geometric_shapes.h:147
Vec3s b
Definition: geometric_shapes.h:147
Vec3s c
Definition: geometric_shapes.h:147
void computeLocalAABB()
virtual function of compute AABB in local coordinate
TriangleP()
Definition: geometric_shapes.h:110
TriangleP(const Vec3s &a_, const Vec3s &b_, const Vec3s &c_)
Definition: geometric_shapes.h:112
#define COAL_DLLAPI
Definition: config.hh:88
#define COAL_DEPRECATED
Definition: deprecated.hh:37
#define COAL_DEPRECATED_MESSAGE(message)
Definition: deprecated.hh:38
#define COAL_THROW_PRETTY(message, exception)
Definition: fwd.hh:64
@ GEOM_CONE
Definition: collision_object.h:77
@ GEOM_TRIANGLE
Definition: collision_object.h:84
@ GEOM_BOX
Definition: collision_object.h:74
@ GEOM_SPHERE
Definition: collision_object.h:75
@ GEOM_CYLINDER
Definition: collision_object.h:78
@ GEOM_CAPSULE
Definition: collision_object.h:76
@ GEOM_ELLIPSOID
Definition: collision_object.h:86
@ GEOM_HALFSPACE
Definition: collision_object.h:83
@ GEOM_PLANE
Definition: collision_object.h:82
@ OT_GEOM
Definition: collision_object.h:55
ConvexBaseTpl< Triangle32::IndexType > ConvexBase32
Definition: geometric_shapes.h:949
ConvexBaseTpl< Triangle16::IndexType > ConvexBase16
Definition: geometric_shapes.h:948
Main namespace.
Definition: broadphase_bruteforce.h:44
NODE_TYPE
traversal node type: bounding volume (AABB, OBB, RSS, kIOS, OBBRSS, KDOP16, KDOP18,...
Definition: collision_object.h:64
Eigen::Matrix< Scalar, 3, 1 > Vec3s
Definition: data_types.h:70
double Scalar
Definition: data_types.h:68
OBJECT_TYPE
object type: BVH (mesh, points), basic geometry, octree
Definition: collision_object.h:52
Eigen::Matrix< Scalar, 3, 3 > Matrix3s
Definition: data_types.h:74
bool isEqual(const Eigen::MatrixBase< Derived > &lhs, const Eigen::MatrixBase< OtherDerived > &rhs, const Scalar tol=std::numeric_limits< Scalar >::epsilon() *100)
Definition: tools.h:204
Definition: geometric_shapes.h:638
_IndexType IndexType
Definition: geometric_shapes.h:639
unsigned char count
Definition: geometric_shapes.h:641
bool operator==(const ConvexBaseTplNeighbors &other) const
Definition: geometric_shapes.h:644
bool operator!=(const ConvexBaseTplNeighbors &other) const
Definition: geometric_shapes.h:651
IndexType begin_id
Definition: geometric_shapes.h:642
Definition: geometric_shapes.h:661
std::vector< Vec3s > points
Definition: geometric_shapes.h:666
std::vector< IndexType > indices
Definition: geometric_shapes.h:671
_IndexType IndexType
Definition: geometric_shapes.h:662
ConvexBaseTplSupportWarmStartPolytope< OtherIndexType > cast() const
Definition: geometric_shapes.h:675