pinocchio  2.4.4
A fast and flexible implementation of Rigid Body Dynamics algorithms and their analytical derivatives
joint-spherical.hpp
1 //
2 // Copyright (c) 2015-2019 CNRS INRIA
3 // Copyright (c) 2015-2016 Wandercraft, 86 rue de Paris 91400 Orsay, France.
4 //
5 
6 #ifndef __pinocchio_joint_spherical_hpp__
7 #define __pinocchio_joint_spherical_hpp__
8 
9 #include "pinocchio/macros.hpp"
10 #include "pinocchio/multibody/joint/joint-base.hpp"
11 #include "pinocchio/multibody/constraint.hpp"
12 #include "pinocchio/math/sincos.hpp"
13 #include "pinocchio/spatial/inertia.hpp"
14 #include "pinocchio/spatial/skew.hpp"
15 
16 namespace pinocchio
17 {
18 
19  template<typename Scalar, int Options = 0> struct MotionSphericalTpl;
21 
22  template<typename Scalar, int Options>
23  struct SE3GroupAction< MotionSphericalTpl<Scalar,Options> >
24  {
26  };
27 
28  template<typename Scalar, int Options, typename MotionDerived>
29  struct MotionAlgebraAction< MotionSphericalTpl<Scalar,Options>, MotionDerived>
30  {
32  };
33 
34  template<typename _Scalar, int _Options>
35  struct traits< MotionSphericalTpl<_Scalar,_Options> >
36  {
37  typedef _Scalar Scalar;
38  enum { Options = _Options };
39  typedef Eigen::Matrix<Scalar,3,1,Options> Vector3;
40  typedef Eigen::Matrix<Scalar,6,1,Options> Vector6;
41  typedef Eigen::Matrix<Scalar,6,6,Options> Matrix6;
42  typedef typename PINOCCHIO_EIGEN_REF_CONST_TYPE(Vector6) ToVectorConstReturnType;
43  typedef typename PINOCCHIO_EIGEN_REF_TYPE(Vector6) ToVectorReturnType;
44  typedef Vector3 AngularType;
45  typedef Vector3 LinearType;
46  typedef const Vector3 ConstAngularType;
47  typedef const Vector3 ConstLinearType;
48  typedef Matrix6 ActionMatrixType;
50  typedef MotionPlain PlainReturnType;
51  enum {
52  LINEAR = 0,
53  ANGULAR = 3
54  };
55  }; // traits MotionSphericalTpl
56 
57  template<typename _Scalar, int _Options>
58  struct MotionSphericalTpl
59  : MotionBase< MotionSphericalTpl<_Scalar,_Options> >
60  {
61  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
62 
63  MOTION_TYPEDEF_TPL(MotionSphericalTpl);
64 
66 
67  template<typename Vector3Like>
68  MotionSphericalTpl(const Eigen::MatrixBase<Vector3Like> & w)
69  : m_w(w)
70  {}
71 
72  Vector3 & operator() () { return m_w; }
73  const Vector3 & operator() () const { return m_w; }
74 
75  inline PlainReturnType plain() const
76  {
77  return PlainReturnType(PlainReturnType::Vector3::Zero(), m_w);
78  }
79 
80  template<typename MotionDerived>
81  void addTo(MotionDense<MotionDerived> & other) const
82  {
83  other.angular() += m_w;
84  }
85 
86  template<typename Derived>
87  void setTo(MotionDense<Derived> & other) const
88  {
89  other.linear().setZero();
90  other.angular() = m_w;
91  }
92 
93  MotionSphericalTpl __plus__(const MotionSphericalTpl & other) const
94  {
95  return MotionSphericalTpl(m_w + other.m_w);
96  }
97 
98  bool isEqual_impl(const MotionSphericalTpl & other) const
99  {
100  return m_w == other.m_w;
101  }
102 
103  template<typename MotionDerived>
104  bool isEqual_impl(const MotionDense<MotionDerived> & other) const
105  {
106  return other.angular() == m_w && other.linear().isZero(0);
107  }
108 
109  template<typename S2, int O2, typename D2>
110  void se3Action_impl(const SE3Tpl<S2,O2> & m, MotionDense<D2> & v) const
111  {
112  // Angular
113  v.angular().noalias() = m.rotation() * m_w;
114 
115  // Linear
116  v.linear().noalias() = m.translation().cross(v.angular());
117  }
118 
119  template<typename S2, int O2>
120  MotionPlain se3Action_impl(const SE3Tpl<S2,O2> & m) const
121  {
122  MotionPlain res;
123  se3Action_impl(m,res);
124  return res;
125  }
126 
127  template<typename S2, int O2, typename D2>
128  void se3ActionInverse_impl(const SE3Tpl<S2,O2> & m, MotionDense<D2> & v) const
129  {
130  // Linear
131  // TODO: use v.angular() as temporary variable
132  Vector3 v3_tmp;
133  v3_tmp.noalias() = m_w.cross(m.translation());
134  v.linear().noalias() = m.rotation().transpose() * v3_tmp;
135 
136  // Angular
137  v.angular().noalias() = m.rotation().transpose() * m_w;
138  }
139 
140  template<typename S2, int O2>
141  MotionPlain se3ActionInverse_impl(const SE3Tpl<S2,O2> & m) const
142  {
143  MotionPlain res;
144  se3ActionInverse_impl(m,res);
145  return res;
146  }
147 
148  template<typename M1, typename M2>
149  void motionAction(const MotionDense<M1> & v, MotionDense<M2> & mout) const
150  {
151  // Linear
152  mout.linear().noalias() = v.linear().cross(m_w);
153 
154  // Angular
155  mout.angular().noalias() = v.angular().cross(m_w);
156  }
157 
158  template<typename M1>
159  MotionPlain motionAction(const MotionDense<M1> & v) const
160  {
161  MotionPlain res;
162  motionAction(v,res);
163  return res;
164  }
165 
166  const Vector3 & angular() const { return m_w; }
167  Vector3 & angular() { return m_w; }
168 
169  protected:
170 
171  Vector3 m_w;
172  }; // struct MotionSphericalTpl
173 
174  template<typename S1, int O1, typename MotionDerived>
175  inline typename MotionDerived::MotionPlain
176  operator+(const MotionSphericalTpl<S1,O1> & m1, const MotionDense<MotionDerived> & m2)
177  {
178  return typename MotionDerived::MotionPlain(m2.linear(),m2.angular() + m1.angular());
179  }
180 
181  template<typename Scalar, int Options> struct ConstraintSphericalTpl;
182 
183  template<typename _Scalar, int _Options>
184  struct traits< ConstraintSphericalTpl<_Scalar,_Options> >
185  {
186  typedef _Scalar Scalar;
187  enum { Options = _Options };
188  enum {
189  LINEAR = 0,
190  ANGULAR = 3
191  };
193  typedef Eigen::Matrix<Scalar,3,1,Options> JointForce;
194  typedef Eigen::Matrix<Scalar,6,3,Options> DenseBase;
195  typedef DenseBase MatrixReturnType;
196  typedef const DenseBase ConstMatrixReturnType;
197  }; // struct traits struct ConstraintSphericalTpl
198 
199  template<typename _Scalar, int _Options>
201  : public ConstraintBase< ConstraintSphericalTpl<_Scalar,_Options> >
202  {
203  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
204 
205  PINOCCHIO_CONSTRAINT_TYPEDEF_TPL(ConstraintSphericalTpl)
206 
208 
209  enum { NV = 3 };
210 
211  int nv_impl() const { return NV; }
212 
213  template<typename Vector3Like>
214  JointMotion __mult__(const Eigen::MatrixBase<Vector3Like> & w) const
215  {
216  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Vector3Like,3);
217  return JointMotion(w);
218  }
219 
221  {
222  template<typename Derived>
224  operator* (const ForceDense<Derived> & phi)
225  { return phi.angular(); }
226 
227  /* [CRBA] MatrixBase operator* (Constraint::Transpose S, ForceSet::Block) */
228  template<typename MatrixDerived>
229  const typename SizeDepType<3>::RowsReturn<MatrixDerived>::ConstType
230  operator*(const Eigen::MatrixBase<MatrixDerived> & F) const
231  {
232  assert(F.rows()==6);
233  return F.derived().template middleRows<3>(Inertia::ANGULAR);
234  }
235  };
236 
237  TransposeConst transpose() const { return TransposeConst(); }
238 
239  DenseBase matrix_impl() const
240  {
241  DenseBase S;
242  S.template block <3,3>(LINEAR,0).setZero();
243  S.template block <3,3>(ANGULAR,0).setIdentity();
244  return S;
245  }
246 
247  template<typename S1, int O1>
248  Eigen::Matrix<S1,6,3,O1> se3Action(const SE3Tpl<S1,O1> & m) const
249  {
250  Eigen::Matrix<S1,6,3,O1> X_subspace;
251  cross(m.translation(),m.rotation(),X_subspace.template middleRows<3>(LINEAR));
252  X_subspace.template middleRows<3>(ANGULAR) = m.rotation();
253 
254  return X_subspace;
255  }
256 
257  template<typename S1, int O1>
258  Eigen::Matrix<S1,6,3,O1> se3ActionInverse(const SE3Tpl<S1,O1> & m) const
259  {
260  Eigen::Matrix<S1,6,3,O1> X_subspace;
261  AxisX::cross(m.translation(),X_subspace.template middleRows<3>(ANGULAR).col(0));
262  AxisY::cross(m.translation(),X_subspace.template middleRows<3>(ANGULAR).col(1));
263  AxisZ::cross(m.translation(),X_subspace.template middleRows<3>(ANGULAR).col(2));
264 
265  X_subspace.template middleRows<3>(LINEAR).noalias()
266  = m.rotation().transpose() * X_subspace.template middleRows<3>(ANGULAR);
267  X_subspace.template middleRows<3>(ANGULAR) = m.rotation().transpose();
268 
269  return X_subspace;
270  }
271 
272  template<typename MotionDerived>
273  DenseBase motionAction(const MotionDense<MotionDerived> & m) const
274  {
275  const typename MotionDerived::ConstLinearType v = m.linear();
276  const typename MotionDerived::ConstAngularType w = m.angular();
277 
278  DenseBase res;
279  skew(v,res.template middleRows<3>(LINEAR));
280  skew(w,res.template middleRows<3>(ANGULAR));
281 
282  return res;
283  }
284 
285  bool isEqual(const ConstraintSphericalTpl &) const { return true; }
286 
287  }; // struct ConstraintSphericalTpl
288 
289  template<typename MotionDerived, typename S2, int O2>
290  inline typename MotionDerived::MotionPlain
291  operator^(const MotionDense<MotionDerived> & m1,
292  const MotionSphericalTpl<S2,O2> & m2)
293  {
294  return m2.motionAction(m1);
295  }
296 
297  /* [CRBA] ForceSet operator* (Inertia Y,Constraint S) */
298  template<typename S1, int O1, typename S2, int O2>
299  inline Eigen::Matrix<S2,6,3,O2>
300  operator*(const InertiaTpl<S1,O1> & Y,
302  {
303  typedef InertiaTpl<S1,O1> Inertia;
304  typedef typename Inertia::Symmetric3 Symmetric3;
305  Eigen::Matrix<S2,6,3,O2> M;
306  // M.block <3,3> (Inertia::LINEAR, 0) = - Y.mass () * skew(Y.lever ());
307  M.template block<3,3>(Inertia::LINEAR,0) = alphaSkew(-Y.mass(), Y.lever());
308  M.template block<3,3>(Inertia::ANGULAR,0) = (Y.inertia() - typename Symmetric3::AlphaSkewSquare(Y.mass(), Y.lever())).matrix();
309  return M;
310  }
311 
312  /* [ABA] Y*S operator*/
313  template<typename M6Like, typename S2, int O2>
314  inline typename SizeDepType<3>::ColsReturn<M6Like>::ConstType
315  operator*(const Eigen::MatrixBase<M6Like> & Y,
317  {
318  typedef ConstraintSphericalTpl<S2,O2> Constraint;
319  return Y.derived().template middleCols<3>(Constraint::ANGULAR);
320  }
321 
322  template<typename S1, int O1>
324  { typedef Eigen::Matrix<S1,6,3,O1> ReturnType; };
325 
326  template<typename S1, int O1, typename MotionDerived>
327  struct MotionAlgebraAction< ConstraintSphericalTpl<S1,O1>,MotionDerived >
328  { typedef Eigen::Matrix<S1,6,3,O1> ReturnType; };
329 
330  template<typename Scalar, int Options> struct JointSphericalTpl;
331 
332  template<typename _Scalar, int _Options>
333  struct traits< JointSphericalTpl<_Scalar,_Options> >
334  {
335  enum {
336  NQ = 4,
337  NV = 3
338  };
339  typedef _Scalar Scalar;
340  enum { Options = _Options };
347 
348  // [ABA]
349  typedef Eigen::Matrix<Scalar,6,NV,Options> U_t;
350  typedef Eigen::Matrix<Scalar,NV,NV,Options> D_t;
351  typedef Eigen::Matrix<Scalar,6,NV,Options> UD_t;
352 
353  PINOCCHIO_JOINT_DATA_BASE_ACCESSOR_DEFAULT_RETURN_TYPE
354 
355  typedef Eigen::Matrix<Scalar,NQ,1,Options> ConfigVector_t;
356  typedef Eigen::Matrix<Scalar,NV,1,Options> TangentVector_t;
357  };
358 
359  template<typename Scalar, int Options>
360  struct traits< JointDataSphericalTpl<Scalar,Options> >
362 
363  template<typename Scalar, int Options>
364  struct traits< JointModelSphericalTpl<Scalar,Options> >
366 
367  template<typename _Scalar, int _Options>
368  struct JointDataSphericalTpl : public JointDataBase< JointDataSphericalTpl<_Scalar,_Options> >
369  {
370  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
371 
373  PINOCCHIO_JOINT_DATA_TYPEDEF_TEMPLATE(JointDerived);
374  PINOCCHIO_JOINT_DATA_BASE_DEFAULT_ACCESSOR
375 
376  Constraint_t S;
377  Transformation_t M;
378  Motion_t v;
379  Bias_t c;
380 
381  // [ABA] specific data
382  U_t U;
383  D_t Dinv;
384  UD_t UDinv;
385 
387  : M(Transformation_t::Identity())
388  , v(Motion_t::Vector3::Zero())
389  , U(U_t::Zero())
390  , Dinv(D_t::Zero())
391  , UDinv(UD_t::Zero())
392  {}
393 
394  static std::string classname() { return std::string("JointDataSpherical"); }
395  std::string shortname() const { return classname(); }
396 
397  }; // struct JointDataSphericalTpl
398 
399  PINOCCHIO_JOINT_CAST_TYPE_SPECIALIZATION(JointModelSphericalTpl);
400  template<typename _Scalar, int _Options>
402  : public JointModelBase< JointModelSphericalTpl<_Scalar,_Options> >
403  {
404  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
405 
407  PINOCCHIO_JOINT_TYPEDEF_TEMPLATE(JointDerived);
408 
410  using Base::id;
411  using Base::idx_q;
412  using Base::idx_v;
413  using Base::setIndexes;
414 
415  JointDataDerived createData() const { return JointDataDerived(); }
416 
417  template<typename ConfigVectorLike>
418  inline void forwardKinematics(Transformation_t & M, const Eigen::MatrixBase<ConfigVectorLike> & q_joint) const
419  {
420  EIGEN_STATIC_ASSERT_SAME_VECTOR_SIZE(ConfigVector_t,ConfigVectorLike);
421  typedef typename Eigen::Quaternion<typename ConfigVectorLike::Scalar,PINOCCHIO_EIGEN_PLAIN_TYPE(ConfigVectorLike)::Options> Quaternion;
422  typedef Eigen::Map<const Quaternion> ConstQuaternionMap;
423 
424  ConstQuaternionMap quat(q_joint.derived().data());
425  //assert(math::fabs(quat.coeffs().squaredNorm()-1.) <= sqrt(Eigen::NumTraits<typename V::Scalar>::epsilon())); TODO: check validity of the rhs precision
426  assert(math::fabs(quat.coeffs().squaredNorm()-1.) <= 1e-4);
427 
428  M.rotation(quat.matrix());
429  M.translation().setZero();
430  }
431 
432  template<typename QuaternionDerived>
433  void calc(JointDataDerived & data,
434  const typename Eigen::QuaternionBase<QuaternionDerived> & quat) const
435  {
436  data.M.rotation(quat.matrix());
437  }
438 
439  template<typename ConfigVector>
440  EIGEN_DONT_INLINE
441  void calc(JointDataDerived & data,
442  const typename Eigen::PlainObjectBase<ConfigVector> & qs) const
443  {
444  typedef typename Eigen::Quaternion<typename ConfigVector::Scalar,ConfigVector::Options> Quaternion;
445  typedef Eigen::Map<const Quaternion> ConstQuaternionMap;
446 
447  ConstQuaternionMap quat(qs.template segment<NQ>(idx_q()).data());
448  calc(data,quat);
449  }
450 
451  template<typename ConfigVector>
452  EIGEN_DONT_INLINE
453  void calc(JointDataDerived & data,
454  const typename Eigen::MatrixBase<ConfigVector> & qs) const
455  {
456  typedef typename Eigen::Quaternion<Scalar,Options> Quaternion;
457 
458  const Quaternion quat(qs.template segment<NQ>(idx_q()));
459  calc(data,quat);
460  }
461 
462  template<typename ConfigVector, typename TangentVector>
463  void calc(JointDataDerived & data,
464  const typename Eigen::MatrixBase<ConfigVector> & qs,
465  const typename Eigen::MatrixBase<TangentVector> & vs) const
466  {
467  calc(data,qs.derived());
468 
469  data.v.angular() = vs.template segment<NV>(idx_v());
470  }
471 
472  template<typename Matrix6Like>
473  void calc_aba(JointDataDerived & data,
474  const Eigen::MatrixBase<Matrix6Like> & I,
475  const bool update_I) const
476  {
477  data.U = I.template block<6,3>(0,Inertia::ANGULAR);
478 
479  // compute inverse
480 // data.Dinv.setIdentity();
481 // data.U.template middleRows<3>(Inertia::ANGULAR).llt().solveInPlace(data.Dinv);
482  internal::PerformStYSInversion<Scalar>::run(data.U.template middleRows<3>(Inertia::ANGULAR),data.Dinv);
483 
484  data.UDinv.template middleRows<3>(Inertia::ANGULAR).setIdentity(); // can be put in data constructor
485  data.UDinv.template middleRows<3>(Inertia::LINEAR).noalias() = data.U.template block<3,3>(Inertia::LINEAR, 0) * data.Dinv;
486 
487  if (update_I)
488  {
489  Matrix6Like & I_ = PINOCCHIO_EIGEN_CONST_CAST(Matrix6Like,I);
490  I_.template block<3,3>(Inertia::LINEAR,Inertia::LINEAR)
491  -= data.UDinv.template middleRows<3>(Inertia::LINEAR) * I_.template block<3,3> (Inertia::ANGULAR, Inertia::LINEAR);
492  I_.template block<6,3>(0,Inertia::ANGULAR).setZero();
493  I_.template block<3,3>(Inertia::ANGULAR,Inertia::LINEAR).setZero();
494  }
495  }
496 
497  static std::string classname() { return std::string("JointModelSpherical"); }
498  std::string shortname() const { return classname(); }
499 
501  template<typename NewScalar>
503  {
505  ReturnType res;
506  res.setIndexes(id(),idx_q(),idx_v());
507  return res;
508  }
509 
510  }; // struct JointModelSphericalTpl
511 
512 } // namespace pinocchio
513 
514 #include <boost/type_traits.hpp>
515 
516 namespace boost
517 {
518  template<typename Scalar, int Options>
519  struct has_nothrow_constructor< ::pinocchio::JointModelSphericalTpl<Scalar,Options> >
520  : public integral_constant<bool,true> {};
521 
522  template<typename Scalar, int Options>
523  struct has_nothrow_copy< ::pinocchio::JointModelSphericalTpl<Scalar,Options> >
524  : public integral_constant<bool,true> {};
525 
526  template<typename Scalar, int Options>
527  struct has_nothrow_constructor< ::pinocchio::JointDataSphericalTpl<Scalar,Options> >
528  : public integral_constant<bool,true> {};
529 
530  template<typename Scalar, int Options>
531  struct has_nothrow_copy< ::pinocchio::JointDataSphericalTpl<Scalar,Options> >
532  : public integral_constant<bool,true> {};
533 }
534 
535 #endif // ifndef __pinocchio_joint_spherical_hpp__
int idx_q(const JointModelTpl< Scalar, Options, JointCollectionTpl > &jmodel)
Visit a JointModelTpl through JointIdxQVisitor to get the index in the full model configuration space...
Definition: casadi.hpp:13
int idx_v(const JointModelTpl< Scalar, Options, JointCollectionTpl > &jmodel)
Visit a JointModelTpl through JointIdxVVisitor to get the index in the full model tangent space corre...
Return type of the ation of a Motion onto an object of type D.
Definition: motion.hpp:44
JointDataTpl< Scalar, Options, JointCollectionTpl > createData(const JointModelTpl< Scalar, Options, JointCollectionTpl > &jmodel)
Visit a JointModelTpl through CreateData visitor to create a JointDataTpl.
JointModelSphericalTpl< NewScalar, Options > cast() const
ConstAngularType angular() const
Return the angular part of the force vector.
Definition: force-base.hpp:35
void forwardKinematics(const ModelTpl< Scalar, Options, JointCollectionTpl > &model, DataTpl< Scalar, Options, JointCollectionTpl > &data, const Eigen::MatrixBase< ConfigVectorType > &q)
Update the joint placements according to the current joint configuration.
std::string shortname(const JointModelTpl< Scalar, Options, JointCollectionTpl > &jmodel)
Visit a JointModelTpl through JointShortnameVisitor to get the shortname of the derived joint model...
void cross(const Eigen::MatrixBase< Vector3 > &v, const Eigen::MatrixBase< Matrix3xIn > &Min, const Eigen::MatrixBase< Matrix3xOut > &Mout)
Applies the cross product onto the columns of M.
Definition: skew.hpp:211
Main pinocchio namespace.
Definition: treeview.dox:24
void alphaSkew(const Scalar alpha, const Eigen::MatrixBase< Vector3 > &v, const Eigen::MatrixBase< Matrix3 > &M)
Computes the skew representation of a given 3d vector multiplied by a given scalar. i.e. the antisymmetric matrix representation of the cross product operator ( )
Definition: skew.hpp:124
Common traits structure to fully define base classes for CRTP.
Definition: fwd.hpp:35
void skew(const Eigen::MatrixBase< Vector3 > &v, const Eigen::MatrixBase< Matrix3 > &M)
Computes the skew representation of a given 3d vector, i.e. the antisymmetric matrix representation o...
Definition: skew.hpp:21
void calc_aba(const JointModelTpl< Scalar, Options, JointCollectionTpl > &jmodel, JointDataTpl< Scalar, Options, JointCollectionTpl > &jdata, const Eigen::MatrixBase< Matrix6Type > &I, const bool update_I)
Visit a JointModelTpl and the corresponding JointDataTpl through JointCalcAbaVisitor to...
MultiplicationOp< InertiaTpl< Scalar, Options >, ConstraintDerived >::ReturnType operator*(const InertiaTpl< Scalar, Options > &Y, const ConstraintBase< ConstraintDerived > &constraint)
 .