pinocchio  3.3.1
A fast and flexible implementation of Rigid Body Dynamics algorithms and their analytical derivatives
joint-planar.hpp
1 //
2 // Copyright (c) 2015-2020 CNRS INRIA
3 // Copyright (c) 2015-2016 Wandercraft, 86 rue de Paris 91400 Orsay, France.
4 //
5 
6 #ifndef __pinocchio_multibody_joint_planar_hpp__
7 #define __pinocchio_multibody_joint_planar_hpp__
8 
9 #include "pinocchio/macros.hpp"
10 #include "pinocchio/multibody/joint/joint-base.hpp"
11 #include "pinocchio/spatial/cartesian-axis.hpp"
12 #include "pinocchio/multibody/joint-motion-subspace.hpp"
13 #include "pinocchio/spatial/motion.hpp"
14 #include "pinocchio/spatial/inertia.hpp"
15 
16 namespace pinocchio
17 {
18 
19  template<typename Scalar, int Options = context::Options>
20  struct MotionPlanarTpl;
21  typedef MotionPlanarTpl<context::Scalar> MotionPlanar;
22 
23  template<typename Scalar, int Options>
24  struct SE3GroupAction<MotionPlanarTpl<Scalar, Options>>
25  {
27  };
28 
29  template<typename Scalar, int Options, typename MotionDerived>
30  struct MotionAlgebraAction<MotionPlanarTpl<Scalar, Options>, MotionDerived>
31  {
33  };
34 
35  template<typename _Scalar, int _Options>
36  struct traits<MotionPlanarTpl<_Scalar, _Options>>
37  {
38  typedef _Scalar Scalar;
39  enum
40  {
41  Options = _Options
42  };
43  typedef Eigen::Matrix<Scalar, 3, 1, Options> Vector3;
44  typedef Eigen::Matrix<Scalar, 6, 1, Options> Vector6;
45  typedef Eigen::Matrix<Scalar, 4, 4, Options> Matrix4;
46  typedef Eigen::Matrix<Scalar, 6, 6, Options> Matrix6;
47  typedef typename PINOCCHIO_EIGEN_REF_CONST_TYPE(Vector6) ToVectorConstReturnType;
48  typedef typename PINOCCHIO_EIGEN_REF_TYPE(Vector6) ToVectorReturnType;
49  typedef Vector3 AngularType;
50  typedef Vector3 LinearType;
51  typedef const Vector3 ConstAngularType;
52  typedef const Vector3 ConstLinearType;
53  typedef Matrix6 ActionMatrixType;
54  typedef Matrix4 HomogeneousMatrixType;
57  enum
58  {
59  LINEAR = 0,
60  ANGULAR = 3
61  };
62  }; // traits MotionPlanarTpl
63 
64  template<typename _Scalar, int _Options>
65  struct MotionPlanarTpl : MotionBase<MotionPlanarTpl<_Scalar, _Options>>
66  {
67  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
68  MOTION_TYPEDEF_TPL(MotionPlanarTpl);
69 
70  typedef CartesianAxis<2> ZAxis;
71 
73  {
74  }
75 
76  MotionPlanarTpl(const Scalar & x_dot, const Scalar & y_dot, const Scalar & theta_dot)
77  {
78  m_data << x_dot, y_dot, theta_dot;
79  }
80 
81  template<typename Vector3Like>
82  MotionPlanarTpl(const Eigen::MatrixBase<Vector3Like> & vj)
83  : m_data(vj)
84  {
85  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Vector3Like, 3);
86  }
87 
88  inline PlainReturnType plain() const
89  {
90  return PlainReturnType(
91  typename PlainReturnType::Vector3(vx(), vy(), Scalar(0)),
92  typename PlainReturnType::Vector3(Scalar(0), Scalar(0), wz()));
93  }
94 
95  template<typename Derived>
96  void addTo(MotionDense<Derived> & other) const
97  {
98  other.linear()[0] += vx();
99  other.linear()[1] += vy();
100  other.angular()[2] += wz();
101  }
102 
103  template<typename MotionDerived>
104  void setTo(MotionDense<MotionDerived> & other) const
105  {
106  other.linear() << vx(), vy(), (Scalar)0;
107  other.angular() << (Scalar)0, (Scalar)0, wz();
108  }
109 
110  template<typename S2, int O2, typename D2>
111  void se3Action_impl(const SE3Tpl<S2, O2> & m, MotionDense<D2> & v) const
112  {
113  v.angular().noalias() = m.rotation().col(2) * wz();
114  v.linear().noalias() = m.rotation().template leftCols<2>() * m_data.template head<2>();
115  v.linear() += m.translation().cross(v.angular());
116  }
117 
118  template<typename S2, int O2>
119  MotionPlain se3Action_impl(const SE3Tpl<S2, O2> & m) const
120  {
121  MotionPlain res;
122  se3Action_impl(m, res);
123  return res;
124  }
125 
126  template<typename S2, int O2, typename D2>
127  void se3ActionInverse_impl(const SE3Tpl<S2, O2> & m, MotionDense<D2> & v) const
128  {
129  // Linear
130  // TODO: use v.angular() as temporary variable
131  Vector3 v3_tmp;
132  ZAxis::alphaCross(wz(), m.translation(), v3_tmp);
133  v3_tmp[0] += vx();
134  v3_tmp[1] += vy();
135  v.linear().noalias() = m.rotation().transpose() * v3_tmp;
136 
137  // Angular
138  v.angular().noalias() = m.rotation().transpose().col(2) * wz();
139  }
140 
141  template<typename S2, int O2>
142  MotionPlain se3ActionInverse_impl(const SE3Tpl<S2, O2> & m) const
143  {
144  MotionPlain res;
145  se3ActionInverse_impl(m, res);
146  return res;
147  }
148 
149  template<typename M1, typename M2>
150  void motionAction(const MotionDense<M1> & v, MotionDense<M2> & mout) const
151  {
152  // Linear
153  ZAxis::alphaCross(-wz(), v.linear(), mout.linear());
154 
155  typename M1::ConstAngularType w_in = v.angular();
156  typename M2::LinearType v_out = mout.linear();
157 
158  v_out[0] -= w_in[2] * vy();
159  v_out[1] += w_in[2] * vx();
160  v_out[2] += -w_in[1] * vx() + w_in[0] * vy();
161 
162  // Angular
163  ZAxis::alphaCross(-wz(), v.angular(), mout.angular());
164  }
165 
166  template<typename M1>
167  MotionPlain motionAction(const MotionDense<M1> & v) const
168  {
169  MotionPlain res;
170  motionAction(v, res);
171  return res;
172  }
173 
174  const Scalar & vx() const
175  {
176  return m_data[0];
177  }
178  Scalar & vx()
179  {
180  return m_data[0];
181  }
182 
183  const Scalar & vy() const
184  {
185  return m_data[1];
186  }
187  Scalar & vy()
188  {
189  return m_data[1];
190  }
191 
192  const Scalar & wz() const
193  {
194  return m_data[2];
195  }
196  Scalar & wz()
197  {
198  return m_data[2];
199  }
200 
201  const Vector3 & data() const
202  {
203  return m_data;
204  }
205  Vector3 & data()
206  {
207  return m_data;
208  }
209 
210  bool isEqual_impl(const MotionPlanarTpl & other) const
211  {
212  return internal::comparison_eq(m_data, other.m_data);
213  }
214 
215  protected:
216  Vector3 m_data;
217 
218  }; // struct MotionPlanarTpl
219 
220  template<typename Scalar, int Options, typename MotionDerived>
221  inline typename MotionDerived::MotionPlain
222  operator+(const MotionPlanarTpl<Scalar, Options> & m1, const MotionDense<MotionDerived> & m2)
223  {
224  typename MotionDerived::MotionPlain result(m2);
225  result.linear()[0] += m1.vx();
226  result.linear()[1] += m1.vy();
227 
228  result.angular()[2] += m1.wz();
229 
230  return result;
231  }
232 
233  template<typename Scalar, int Options>
234  struct JointMotionSubspacePlanarTpl;
235 
236  template<typename _Scalar, int _Options>
237  struct traits<JointMotionSubspacePlanarTpl<_Scalar, _Options>>
238  {
239  typedef _Scalar Scalar;
240  enum
241  {
242  Options = _Options
243  };
244  enum
245  {
246  LINEAR = 0,
247  ANGULAR = 3
248  };
250  typedef Eigen::Matrix<Scalar, 3, 1, Options> JointForce;
251  typedef Eigen::Matrix<Scalar, 6, 3, Options> DenseBase;
252  typedef Eigen::Matrix<Scalar, 3, 3, Options> ReducedSquaredMatrix;
253 
254  typedef DenseBase MatrixReturnType;
255  typedef const DenseBase ConstMatrixReturnType;
256 
257  typedef typename ReducedSquaredMatrix::IdentityReturnType StDiagonalMatrixSOperationReturnType;
258  }; // struct traits JointMotionSubspacePlanarTpl
259 
260  template<typename _Scalar, int _Options>
262  : JointMotionSubspaceBase<JointMotionSubspacePlanarTpl<_Scalar, _Options>>
263  {
264  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
265  PINOCCHIO_CONSTRAINT_TYPEDEF_TPL(JointMotionSubspacePlanarTpl)
266 
267  enum
268  {
269  NV = 3
270  };
271 
273 
274  template<typename Vector3Like>
275  JointMotion __mult__(const Eigen::MatrixBase<Vector3Like> & vj) const
276  {
277  EIGEN_STATIC_ASSERT_VECTOR_SPECIFIC_SIZE(Vector3Like, 3);
278  return JointMotion(vj);
279  }
280 
281  int nv_impl() const
282  {
283  return NV;
284  }
285 
286  struct ConstraintTranspose : JointMotionSubspaceTransposeBase<JointMotionSubspacePlanarTpl>
287  {
288  const JointMotionSubspacePlanarTpl & ref;
290  : ref(ref)
291  {
292  }
293 
294  template<typename Derived>
295  typename ForceDense<Derived>::Vector3 operator*(const ForceDense<Derived> & phi)
296  {
297  typedef typename ForceDense<Derived>::Vector3 Vector3;
298  return Vector3(phi.linear()[0], phi.linear()[1], phi.angular()[2]);
299  }
300 
301  /* [CRBA] MatrixBase operator* (Constraint::Transpose S, ForceSet::Block) */
302  template<typename Derived>
303  friend typename Eigen::
304  Matrix<typename Eigen::MatrixBase<Derived>::Scalar, 3, Derived::ColsAtCompileTime>
305  operator*(const ConstraintTranspose &, const Eigen::MatrixBase<Derived> & F)
306  {
307  typedef typename Eigen::MatrixBase<Derived>::Scalar Scalar;
308  typedef Eigen::Matrix<Scalar, 3, Derived::ColsAtCompileTime> MatrixReturnType;
309  assert(F.rows() == 6);
310 
311  MatrixReturnType result(3, F.cols());
312  result.template topRows<2>() = F.template topRows<2>();
313  result.template bottomRows<1>() = F.template bottomRows<1>();
314  return result;
315  }
316 
317  }; // struct ConstraintTranspose
318 
319  ConstraintTranspose transpose() const
320  {
321  return ConstraintTranspose(*this);
322  }
323 
324  DenseBase matrix_impl() const
325  {
326  DenseBase S;
327  S.template block<3, 3>(Inertia::LINEAR, 0).setZero();
328  S.template block<3, 3>(Inertia::ANGULAR, 0).setZero();
329  S(Inertia::LINEAR + 0, 0) = Scalar(1);
330  S(Inertia::LINEAR + 1, 1) = Scalar(1);
331  S(Inertia::ANGULAR + 2, 2) = Scalar(1);
332  return S;
333  }
334 
335  template<typename S1, int O1>
336  DenseBase se3Action(const SE3Tpl<S1, O1> & m) const
337  {
338  DenseBase X_subspace;
339 
340  // LINEAR
341  X_subspace.template block<3, 2>(Motion::LINEAR, 0) = m.rotation().template leftCols<2>();
342  X_subspace.template block<3, 1>(Motion::LINEAR, 2).noalias() =
343  m.translation().cross(m.rotation().template rightCols<1>());
344 
345  // ANGULAR
346  X_subspace.template block<3, 2>(Motion::ANGULAR, 0).setZero();
347  X_subspace.template block<3, 1>(Motion::ANGULAR, 2) = m.rotation().template rightCols<1>();
348 
349  return X_subspace;
350  }
351 
352  template<typename S1, int O1>
353  DenseBase se3ActionInverse(const SE3Tpl<S1, O1> & m) const
354  {
355  DenseBase X_subspace;
356 
357  // LINEAR
358  X_subspace.template block<3, 2>(Motion::LINEAR, 0) =
359  m.rotation().transpose().template leftCols<2>();
360  X_subspace.template block<3, 1>(Motion::ANGULAR, 2).noalias() =
361  m.rotation().transpose() * m.translation(); // tmp variable
362  X_subspace.template block<3, 1>(Motion::LINEAR, 2).noalias() =
363  -X_subspace.template block<3, 1>(Motion::ANGULAR, 2)
364  .cross(m.rotation().transpose().template rightCols<1>());
365 
366  // ANGULAR
367  X_subspace.template block<3, 2>(Motion::ANGULAR, 0).setZero();
368  X_subspace.template block<3, 1>(Motion::ANGULAR, 2) =
369  m.rotation().transpose().template rightCols<1>();
370 
371  return X_subspace;
372  }
373 
374  template<typename MotionDerived>
375  DenseBase motionAction(const MotionDense<MotionDerived> & m) const
376  {
377  const typename MotionDerived::ConstLinearType v = m.linear();
378  const typename MotionDerived::ConstAngularType w = m.angular();
379  DenseBase res(DenseBase::Zero());
380 
381  res(0, 1) = -w[2];
382  res(0, 2) = v[1];
383  res(1, 0) = w[2];
384  res(1, 2) = -v[0];
385  res(2, 0) = -w[1];
386  res(2, 1) = w[0];
387  res(3, 2) = w[1];
388  res(4, 2) = -w[0];
389 
390  return res;
391  }
392 
393  bool isEqual(const JointMotionSubspacePlanarTpl &) const
394  {
395  return true;
396  }
397 
398  }; // struct JointMotionSubspacePlanarTpl
399 
400  template<typename MotionDerived, typename S2, int O2>
401  inline typename MotionDerived::MotionPlain
402  operator^(const MotionDense<MotionDerived> & m1, const MotionPlanarTpl<S2, O2> & m2)
403  {
404  return m2.motionAction(m1);
405  }
406 
407  /* [CRBA] ForceSet operator* (Inertia Y,Constraint S) */
408  template<typename S1, int O1, typename S2, int O2>
409  inline typename Eigen::Matrix<S1, 6, 3, O1>
410  operator*(const InertiaTpl<S1, O1> & Y, const JointMotionSubspacePlanarTpl<S2, O2> &)
411  {
412  typedef InertiaTpl<S1, O1> Inertia;
413  typedef typename Inertia::Scalar Scalar;
414  typedef Eigen::Matrix<S1, 6, 3, O1> ReturnType;
415 
416  ReturnType M;
417  const Scalar mass = Y.mass();
418  const typename Inertia::Vector3 & com = Y.lever();
419  const typename Inertia::Symmetric3 & inertia = Y.inertia();
420 
421  M.template topLeftCorner<3, 3>().setZero();
422  M.template topLeftCorner<2, 2>().diagonal().fill(mass);
423 
424  const typename Inertia::Vector3 mc(mass * com);
425  M.template rightCols<1>().template head<2>() << -mc(1), mc(0);
426 
427  M.template bottomLeftCorner<3, 2>() << (Scalar)0, -mc(2), mc(2), (Scalar)0, -mc(1), mc(0);
428  M.template rightCols<1>().template tail<3>() = inertia.data().template tail<3>();
429  M.template rightCols<1>()[3] -= mc(0) * com(2);
430  M.template rightCols<1>()[4] -= mc(1) * com(2);
431  M.template rightCols<1>()[5] += mass * (com(0) * com(0) + com(1) * com(1));
432 
433  return M;
434  }
435 
436  /* [ABA] Y*S operator (Inertia Y,Constraint S) */
437  // inline Eigen::Matrix<context::Scalar,6,1>
438 
439  template<typename M6Like, typename S2, int O2>
440  inline Eigen::Matrix<S2, 6, 3, O2>
441  operator*(const Eigen::MatrixBase<M6Like> & Y, const JointMotionSubspacePlanarTpl<S2, O2> &)
442  {
443  EIGEN_STATIC_ASSERT_MATRIX_SPECIFIC_SIZE(M6Like, 6, 6);
444  typedef Eigen::Matrix<S2, 6, 3, O2> Matrix63;
445 
446  Matrix63 IS;
447  IS.template leftCols<2>() = Y.template leftCols<2>();
448  IS.template rightCols<1>() = Y.template rightCols<1>();
449 
450  return IS;
451  }
452 
453  template<typename S1, int O1>
455  {
456  typedef Eigen::Matrix<S1, 6, 3, O1> ReturnType;
457  };
458 
459  template<typename S1, int O1, typename MotionDerived>
460  struct MotionAlgebraAction<JointMotionSubspacePlanarTpl<S1, O1>, MotionDerived>
461  {
462  typedef Eigen::Matrix<S1, 6, 3, O1> ReturnType;
463  };
464 
465  template<typename Scalar, int Options>
467 
468  template<typename _Scalar, int _Options>
469  struct traits<JointPlanarTpl<_Scalar, _Options>>
470  {
471  enum
472  {
473  NQ = 4,
474  NV = 3
475  };
476  enum
477  {
478  Options = _Options
479  };
480  typedef _Scalar Scalar;
487 
488  // [ABA]
489  typedef Eigen::Matrix<Scalar, 6, NV, Options> U_t;
490  typedef Eigen::Matrix<Scalar, NV, NV, Options> D_t;
491  typedef Eigen::Matrix<Scalar, 6, NV, Options> UD_t;
492 
493  typedef Eigen::Matrix<Scalar, NQ, 1, Options> ConfigVector_t;
494  typedef Eigen::Matrix<Scalar, NV, 1, Options> TangentVector_t;
495 
496  PINOCCHIO_JOINT_DATA_BASE_ACCESSOR_DEFAULT_RETURN_TYPE
497  };
498 
499  template<typename _Scalar, int _Options>
500  struct traits<JointDataPlanarTpl<_Scalar, _Options>>
501  {
503  typedef _Scalar Scalar;
504  };
505  template<typename _Scalar, int _Options>
506  struct traits<JointModelPlanarTpl<_Scalar, _Options>>
507  {
509  typedef _Scalar Scalar;
510  };
511 
512  template<typename _Scalar, int _Options>
513  struct JointDataPlanarTpl : public JointDataBase<JointDataPlanarTpl<_Scalar, _Options>>
514  {
515  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
517  PINOCCHIO_JOINT_DATA_TYPEDEF_TEMPLATE(JointDerived);
518  PINOCCHIO_JOINT_DATA_BASE_DEFAULT_ACCESSOR
519 
520  ConfigVector_t joint_q;
521  TangentVector_t joint_v;
522 
523  Constraint_t S;
524  Transformation_t M;
525  Motion_t v;
526  Bias_t c;
527 
528  // [ABA] specific data
529  U_t U;
530  D_t Dinv;
531  UD_t UDinv;
532  D_t StU;
533 
535  : joint_q(Scalar(0), Scalar(0), Scalar(1), Scalar(0))
536  , joint_v(TangentVector_t::Zero())
537  , M(Transformation_t::Identity())
538  , v(Motion_t::Vector3::Zero())
539  , U(U_t::Zero())
540  , Dinv(D_t::Zero())
541  , UDinv(UD_t::Zero())
542  , StU(D_t::Zero())
543  {
544  }
545 
546  static std::string classname()
547  {
548  return std::string("JointDataPlanar");
549  }
550  std::string shortname() const
551  {
552  return classname();
553  }
554 
555  }; // struct JointDataPlanarTpl
556 
557  PINOCCHIO_JOINT_CAST_TYPE_SPECIALIZATION(JointModelPlanarTpl);
558  template<typename _Scalar, int _Options>
559  struct JointModelPlanarTpl : public JointModelBase<JointModelPlanarTpl<_Scalar, _Options>>
560  {
561  EIGEN_MAKE_ALIGNED_OPERATOR_NEW
563  PINOCCHIO_JOINT_TYPEDEF_TEMPLATE(JointDerived);
564 
566  using Base::id;
567  using Base::idx_q;
568  using Base::idx_v;
569  using Base::setIndexes;
570 
571  JointDataDerived createData() const
572  {
573  return JointDataDerived();
574  }
575 
576  const std::vector<bool> hasConfigurationLimit() const
577  {
578  return {true, true, false, false};
579  }
580 
581  const std::vector<bool> hasConfigurationLimitInTangent() const
582  {
583  return {true, true, false};
584  }
585 
586  template<typename ConfigVector>
587  inline void
588  forwardKinematics(Transformation_t & M, const Eigen::MatrixBase<ConfigVector> & q_joint) const
589  {
590  const Scalar &c_theta = q_joint(2), &s_theta = q_joint(3);
591 
592  M.rotation().template topLeftCorner<2, 2>() << c_theta, -s_theta, s_theta, c_theta;
593  M.translation().template head<2>() = q_joint.template head<2>();
594  }
595 
596  template<typename ConfigVector>
597  void calc(JointDataDerived & data, const typename Eigen::MatrixBase<ConfigVector> & qs) const
598  {
599  data.joint_q = qs.template segment<NQ>(idx_q());
600 
601  const Scalar &c_theta = data.joint_q(2), &s_theta = data.joint_q(3);
602 
603  data.M.rotation().template topLeftCorner<2, 2>() << c_theta, -s_theta, s_theta, c_theta;
604  data.M.translation().template head<2>() = data.joint_q.template head<2>();
605  }
606 
607  template<typename TangentVector>
608  void
609  calc(JointDataDerived & data, const Blank, const typename Eigen::MatrixBase<TangentVector> & vs)
610  const
611  {
612  data.joint_v = vs.template segment<NV>(idx_v());
613 
614 #define q_dot data.joint_v
615  data.v.vx() = q_dot(0);
616  data.v.vy() = q_dot(1);
617  data.v.wz() = q_dot(2);
618 #undef q_dot
619  }
620 
621  template<typename ConfigVector, typename TangentVector>
622  void calc(
623  JointDataDerived & data,
624  const typename Eigen::MatrixBase<ConfigVector> & qs,
625  const typename Eigen::MatrixBase<TangentVector> & vs) const
626  {
627  calc(data, qs.derived());
628 
629  data.joint_v = vs.template segment<NV>(idx_v());
630 
631 #define q_dot data.joint_v
632  data.v.vx() = q_dot(0);
633  data.v.vy() = q_dot(1);
634  data.v.wz() = q_dot(2);
635 #undef q_dot
636  }
637 
638  template<typename VectorLike, typename Matrix6Like>
639  void calc_aba(
640  JointDataDerived & data,
641  const Eigen::MatrixBase<VectorLike> & armature,
642  const Eigen::MatrixBase<Matrix6Like> & I,
643  const bool update_I) const
644  {
645  data.U.template leftCols<2>() = I.template leftCols<2>();
646  data.U.template rightCols<1>() = I.template rightCols<1>();
647 
648  data.StU.template leftCols<2>() = data.U.template topRows<2>().transpose();
649  data.StU.template rightCols<1>() = data.U.template bottomRows<1>();
650 
651  data.StU.diagonal() += armature;
652  internal::PerformStYSInversion<Scalar>::run(data.StU, data.Dinv);
653 
654  data.UDinv.noalias() = data.U * data.Dinv;
655 
656  if (update_I)
657  PINOCCHIO_EIGEN_CONST_CAST(Matrix6Like, I).noalias() -= data.UDinv * data.U.transpose();
658  }
659 
660  static std::string classname()
661  {
662  return std::string("JointModelPlanar");
663  }
664  std::string shortname() const
665  {
666  return classname();
667  }
668 
670  template<typename NewScalar>
672  {
673  typedef JointModelPlanarTpl<NewScalar, Options> ReturnType;
674  ReturnType res;
675  res.setIndexes(id(), idx_q(), idx_v());
676  return res;
677  }
678 
679  }; // struct JointModelPlanarTpl
680 
681 } // namespace pinocchio
682 
683 #include <boost/type_traits.hpp>
684 
685 namespace boost
686 {
687  template<typename Scalar, int Options>
688  struct has_nothrow_constructor<::pinocchio::JointModelPlanarTpl<Scalar, Options>>
689  : public integral_constant<bool, true>
690  {
691  };
692 
693  template<typename Scalar, int Options>
694  struct has_nothrow_copy<::pinocchio::JointModelPlanarTpl<Scalar, Options>>
695  : public integral_constant<bool, true>
696  {
697  };
698 
699  template<typename Scalar, int Options>
700  struct has_nothrow_constructor<::pinocchio::JointDataPlanarTpl<Scalar, Options>>
701  : public integral_constant<bool, true>
702  {
703  };
704 
705  template<typename Scalar, int Options>
706  struct has_nothrow_copy<::pinocchio::JointDataPlanarTpl<Scalar, Options>>
707  : public integral_constant<bool, true>
708  {
709  };
710 } // namespace boost
711 
712 #endif // ifndef __pinocchio_multibody_joint_planar_hpp__
ConstAngularType angular() const
Return the angular part of the force vector.
Definition: force-base.hpp:47
ConstLinearType linear() const
Return the linear part of the force vector.
Definition: force-base.hpp:57
Main pinocchio namespace.
Definition: treeview.dox:11
JointDataTpl< Scalar, Options, JointCollectionTpl >::TangentVector_t joint_v(const JointDataTpl< Scalar, Options, JointCollectionTpl > &jdata)
Visit a JointDataVariant through JointConfigVisitor to get the joint velocity vector.
JointDataTpl< Scalar, Options, JointCollectionTpl >::ConfigVector_t joint_q(const JointDataTpl< Scalar, Options, JointCollectionTpl > &jdata)
Visit a JointDataVariant through JointConfigVisitor to get the joint configuration vector.
Blank type.
Definition: fwd.hpp:77
JointModelPlanarTpl< NewScalar, Options > cast() const
Return type of the ation of a Motion onto an object of type D.
Definition: motion.hpp:46
Common traits structure to fully define base classes for CRTP.
Definition: fwd.hpp:72